Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The KANDY Benchmark: Incremental Neuro-Symbolic Learning and Reasoning with Kandinsky Patterns (2402.17431v1)

Published 27 Feb 2024 in cs.AI and cs.LG

Abstract: Artificial intelligence is continuously seeking novel challenges and benchmarks to effectively measure performance and to advance the state-of-the-art. In this paper we introduce KANDY, a benchmarking framework that can be used to generate a variety of learning and reasoning tasks inspired by Kandinsky patterns. By creating curricula of binary classification tasks with increasing complexity and with sparse supervisions, KANDY can be used to implement benchmarks for continual and semi-supervised learning, with a specific focus on symbol compositionality. Classification rules are also provided in the ground truth to enable analysis of interpretable solutions. Together with the benchmark generation pipeline, we release two curricula, an easier and a harder one, that we propose as new challenges for the research community. With a thorough experimental evaluation, we show how both state-of-the-art neural models and purely symbolic approaches struggle with solving most of the tasks, thus calling for the application of advanced neuro-symbolic methods trained over time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Barrett D, Hill F, Santoro A, et al (2018) Measuring abstract reasoning in neural networks. In: International conference on machine learning, PMLR, pp 511–520 Benny et al [2021] Benny Y, Pekar N, Wolf L (2021) Scale-localized abstract reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 12557–12565 Bongard [1970] Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Benny Y, Pekar N, Wolf L (2021) Scale-localized abstract reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 12557–12565 Bongard [1970] Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  2. Benny Y, Pekar N, Wolf L (2021) Scale-localized abstract reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 12557–12565 Bongard [1970] Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  3. Bongard N (1970) Pattern recognition. Spartan Books, New York Chollet [2019] Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  4. Chollet F (2019) On the measure of intelligence. arXiv:191101547 Chrysakis and Moens [2020] Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  5. Chrysakis A, Moens MF (2020) Online continual learning from imbalanced data. In: International Conference on Machine Learning, PMLR, pp 1952–1961 Dosovitskiy et al [2021] Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  6. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: Int. Conf. on Learn. Represent. He et al [2016] He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  7. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conf. on Computer Vision and Pattern Rec., pp 770–778 Helff et al [2023] Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  8. Helff L, Stammer W, Shindo H, et al (2023) V-lol: A diagnostic dataset for visual logical learning. arXiv preprint arXiv:230607743 Hersche et al [2023] Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  9. Hersche M, Zeqiri M, Benini L, et al (2023) A neuro-vector-symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence 5(4):363–375 Holzinger et al [2019] Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  10. Holzinger A, Kickmeier-Rust M, Müller H (2019) Kandinsky patterns as iq-test for machine learning. In: Machine Learning and Knowledge Extraction: 3rd International Cross-Domain Conference, CD-MAKE, Springer, pp 1–14 Holzinger et al [2021] Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  11. Holzinger A, Saranti A, Mueller H (2021) KANDINSKYPatterns–An experimental exploration environment for Pattern Analysis and Machine Intelligence. arXiv preprint arXiv:210300519 Hu et al [2021] Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  12. Hu S, Ma Y, Liu X, et al (2021) Stratified rule-aware network for abstract visual reasoning. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 1567–1574 Jiang et al [2023] Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  13. Jiang G, Tang C, Li Y, et al (2023) Bongard-tool: Tool concept induction from few-shot visual exemplars. In: PKU 22Fall Course: Cognitive Reasoning Jiang et al [2022] Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  14. Jiang H, Ma X, Nie W, et al (2022) Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In: IEEE/CVF Conf. on Computer Vision and Pattern Rec., pp 19056–19065 Johnson et al [2017] Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  15. Johnson J, Hariharan B, Van Der Maaten L, et al (2017) Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp 2901–2910 Kaur et al [2022] Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  16. Kaur D, Uslu S, Rittichier KJ, et al (2022) Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55(2):1–38 Larson and Michalski [1977] Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  17. Larson J, Michalski RS (1977) Inductive inference of vl decision rules. ACM SIGART Bulletin (63):38–44 Liu et al [2023] Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  18. Liu X, Lu Z, Mou L (2023) Weakly supervised reasoning by neuro-symbolic approaches. arXiv preprint arXiv:230913072 Mai et al [2022] Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  19. Mai Z, Li R, Jeong J, et al (2022) Online continual learning in image classification: An empirical survey. Neurocomputing 469:28–51 Marconato et al [2023] Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  20. Marconato E, Bontempo G, Ficarra E, et al (2023) Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept rehearsal. In: Proc. of the International Conference on Machine Learning, ICML, pp 23915–23936 Michalski [1980] Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  21. Michalski RS (1980) Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (4):349–361 Müller and Holzinger [2021] Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  22. Müller H, Holzinger A (2021) Kandinsky patterns. Artificial intelligence 300:103546 Nie et al [2020] Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  23. Nie W, Yu Z, Mao L, et al (2020) Bongard-logo: A new benchmark for human-level concept learning and reasoning. Advances in Neur Inf Proc Sys 33:16468–16480 Ott et al [2023] Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  24. Ott J, Ledaguenel A, Hudelot C, et al (2023) How to think about benchmarking neurosymbolic ai? In: 17th Int. Work. on Neural-Symbolic Learning and Reasoning Raven [1938] Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  25. Raven JC (1938) Raven standard progressive matrices. Journ of Cognit and Devel Shindo et al [2023] Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  26. Shindo H, Pfanschilling V, Dhami DS, et al (2023) α𝛼\alphaitalic_α ILP: thinking visual scenes as differentiable logic programs. Machine Learning 112(5):1465–1497 Spratley et al [2023] Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  27. Spratley S, Ehinger KA, Miller T (2023) Unicode analogies: An anti-objectivist visual reasoning challenge. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec., pp 19082–19091 Stammer et al [2022] Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  28. Stammer W, Memmel M, Schramowski P, et al (2022) Interactive disentanglement: Learning concepts by interacting with their prototype representations. In: IEEE Conf. on Computer Vision and Pattern Rec., pp 10317–10328 Teney et al [2020] Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  29. Teney D, Wang P, Cao J, et al (2020) V-prom: A benchmark for visual reasoning using visual progressive matrices. In: Proc. of the AAAI Conference on Artificial Intelligence, pp 12071–12078 Treisman [1998] Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  30. Treisman A (1998) Feature binding, attention and object perception. Philos Trans of the Royal Society of London Series B: Biological Sciences 353(1373):1295–1306 Wang et al [2021] Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  31. Wang X, Chen Y, Zhu W (2021) A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):4555–4576 Yin et al [2022] Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  32. Yin A, Lu W, Wang S, et al (2022) Visual perception inference on raven’s progressive matrices by semi-supervised contrastive learning. In: CAAI International Conference on Artificial Intelligence, Springer, pp 399–412 Youssef et al [2022] Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  33. Youssef S, Zečević M, Dhami DS, et al (2022) Towards a solution to bongard problems: A causal approach. arXiv preprint arXiv:220607196 Yun et al [2020] Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  34. Yun X, Bohn T, Ling C (2020) A deeper look at bongard problems. In: Advances in Artificial Intelligence: 33rd Canadian AI 2020, Springer, pp 528–539 Zhang et al [2019] Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
  35. Zhang C, Gao F, Jia B, et al (2019) Raven: A dataset for relational and analogical visual reasoning. In: Proc. of the IEEE/CVF Conf. on Comp. Vis. and Patt. Rec.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Luca Salvatore Lorello (2 papers)
  2. Marco Lippi (19 papers)
  3. Stefano Melacci (48 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com