A robust parameterized enhanced shift-splitting preconditioner for three-by-three block saddle point problems (2402.17357v3)
Abstract: This paper proposes a new parameterized enhanced shift-splitting (PESS) preconditioner to solve the three-by-three block saddle point problem (SPP). Additionally, we introduce a local PESS (LPESS) preconditioner by relaxing the PESS preconditioner. Necessary and sufficient criteria are established for the convergence of the proposed PESS iterative process for any initial guess. Furthermore, we meticulously investigate the spectral bounds of the PESS and LPESS preconditioned matrices. Moreover, empirical investigations have been performed for the sensitivity analysis of the proposed PESS preconditioner, which unveils its robustness. Numerical experiments are carried out to demonstrate the enhanced efficiency and robustness of the proposed PESS and LPESS preconditioners compared to the existing state-of-the-art preconditioners.
- A new block-diagonal preconditioner for a class of 3×3333\times 33 × 3 block saddle point problems. Mediterr. J. Math., 19(1):43, 15, 2022.
- C. Bacuta. A unified approach for Uzawa algorithms. SIAM J. Numer. Anal., 44(6):2633–2649, 2006.
- A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math., 24(4):539–552, 2006.
- Two block preconditioners for a class of double saddle point linear systems. Appl. Numer. Math., 190:155–167, 2023.
- Numerical solution of saddle point problems. Acta Numer., 14:1–137, 2005.
- A. k. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996.
- Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal., 34(3):1072–1092, 1997.
- F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.
- Y. Cao. Shift-splitting preconditioners for a class of block three-by-three saddle point problems. Appl. Math. Lett., 96:40–46, 2019.
- Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math., 272:239–250, 2014.
- On preconditioned generalized shift-splitting iteration methods for saddle point problems. Comput. Math. Appl., 74(4):859–872, 2017.
- Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal., 37(5):1542–1570, 2000.
- Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal., 31(6):1645–1661, 1994.
- Algorithm 886: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Software, 33(2):Art. 14, 18, 2007.
- On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput., 23(4):1376–1395, 2001.
- D. Han and X. Yuan. Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal., 51(6):3446–3457, 2013.
- M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards, 49:409–436, 1952.
- N. Huang and C.-F. Ma. Spectral analysis of the preconditioned system for the 3×3333\times 33 × 3 block saddle point problem. Numer. Algor., 81(2):421–444, 2019.
- Uzawa methods for a class of block three-by-three saddle-point problems. Numer. Linear Algebra Appl., 26(6):e2265, 26, 2019.
- I. Perugia and V. Simoncini. Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Linear Algebra Appl., 7(7-8):585–616, 2000.
- Three-field block preconditioners for models of coupled magma/mantle dynamics. SIAM J. Sci. Comput., 37(5):A2270–A2294, 2015.
- Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, second edition, 2003.
- On the generalized shift-splitting preconditioner for saddle point problems. Appl. Math. Lett., 48:55–61, 2015.
- An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems. Math. Commun., 26(2):177–195, 2021.
- V. Sarin and A. Sameh. An efficient iterative method for the generalized Stokes problem. SIAM J. Sci. Comput., 19(1):206–226, 1998. ISSN 1064-8275,1095-7197.
- H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems, volume 13 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2003.
- L. Wang and K. Zhang. Generalized shift-splitting preconditioner for saddle point problems with block three-by-three structure. Open Access Library Journal, 6(12):1–14, 2019.
- A class of new extended shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math., 357:123–145, 2019.
- On parameterized block symmetric positive definite preconditioners for a class of block three-by-three saddle point problems. J. Comput. Appl. Math., 405:113959, 2022.
- A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.
- Extensive generalized shift-splitting preconditioner for 3 ×\times× 3 block saddle point problems. Appl. Math. Lett., 143:108668, 7, 2023.