Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Measuring kinematic anisotropies with pulsar timing arrays (2402.17312v2)

Published 27 Feb 2024 in gr-qc and astro-ph.CO

Abstract: Recent Pulsar Timing Array (PTA) collaborations show strong evidence for a stochastic gravitational wave background (SGWB) with the characteristic Hellings-Downs inter-pulsar correlations. The signal may stem from supermassive black hole binary mergers, or early universe phenomena. The former is expected to be strongly anisotropic while primordial backgrounds are likely to be predominantly isotropic with small fluctuations. In case the observed SGWB is of cosmological origin, our relative motion with respect to the SGWB rest frame is a guaranteed source of anisotropy, leading to $\textit{O}(10{-3})$ energy density fluctuations of the SGWB. For such cosmological SGWB, kinematic anisotropies are likely to be larger than the intrinsic anisotropies, akin to the cosmic microwave background (CMB) dipole anisotropy. We assess the sensitivity of current PTA data to the kinematic dipole anisotropy, and we also forecast at what extent the magnitude and direction of the kinematic dipole can be measured in the future with an SKA-like experiment. We also discuss how the spectral shape of the SGWB and the location of the pulsars to monitor affect the prospects of detecting the kinematic dipole with PTA. In the future, a detection of this anisotropy may even help resolve the discrepancy in the magnitude of the kinematic dipole as measured by CMB and large-scale structure observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951 no. 1, (2023) L8, arXiv:2306.16213 [astro-ph.HE].
  2. D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 no. 1, (2023) L6, arXiv:2306.16215 [astro-ph.HE].
  3. H. Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23 no. 7, (2023) 075024, arXiv:2306.16216 [astro-ph.HE].
  4. EPTA, InPTA: Collaboration, J. Antoniadis et al., “The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals,” Astron. Astrophys. 678 (6, 2023) A50, arXiv:2306.16214 [astro-ph.HE].
  5. International Pulsar Timing Array Collaboration, G. Agazie et al., “Comparing recent PTA results on the nanohertz stochastic gravitational wave background,” arXiv:2309.00693 [astro-ph.HE].
  6. A. Sesana, A. Vecchio, and C. N. Colacino, “The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays,” Mon. Not. Roy. Astron. Soc. 390 (2008) 192, arXiv:0804.4476 [astro-ph].
  7. S. Burke-Spolaor et al., “The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27 no. 1, (2019) 5, arXiv:1811.08826 [astro-ph.HE].
  8. C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35 no. 16, (Aug., 2018) 163001, arXiv:1801.04268 [astro-ph.CO]. https://iopscience.iop.org/article/10.1088/1361-6382/aac608.
  9. N. J. Cornish and A. Sesana, “Pulsar Timing Array Analysis for Black Hole Backgrounds,” Class. Quant. Grav. 30 (2013) 224005, arXiv:1305.0326 [gr-qc].
  10. C. M. Mingarelli, T. Sidery, I. Mandel, and A. Vecchio, “Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays,” Phys. Rev. D 88 no. 6, (2013) 062005, arXiv:1306.5394 [astro-ph.HE].
  11. S. R. Taylor and J. R. Gair, “Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays,” Phys. Rev. D 88 (2013) 084001, arXiv:1306.5395 [gr-qc].
  12. C. M. F. Mingarelli, T. J. W. Lazio, A. Sesana, J. E. Greene, J. A. Ellis, C.-P. Ma, S. Croft, S. Burke-Spolaor, and S. R. Taylor, “The local nanohertz gravitational-wave landscape from supermassive black hole binaries,” Nature Astronomy 1 (Nov., 2017) 886–892, arXiv:1708.03491 [astro-ph.GA].
  13. N. J. Cornish and L. Sampson, “Towards Robust Gravitational Wave Detection with Pulsar Timing Arrays,” Phys. Rev. D 93 no. 10, (2016) 104047, arXiv:1512.06829 [gr-qc].
  14. S. R. Taylor, R. van Haasteren, and A. Sesana, “From Bright Binaries To Bumpy Backgrounds: Mapping Realistic Gravitational Wave Skies With Pulsar-Timing Arrays,” Phys. Rev. D 102 no. 8, (2020) 084039, arXiv:2006.04810 [astro-ph.IM].
  15. B. Bécsy, N. J. Cornish, and L. Z. Kelley, “Exploring Realistic Nanohertz Gravitational-wave Backgrounds,” Astrophys. J. 941 no. 2, (2022) 119, arXiv:2207.01607 [astro-ph.HE].
  16. B. Allen, “Variance of the Hellings-Downs correlation,” Phys. Rev. D 107 no. 4, (2023) 043018, arXiv:2205.05637 [gr-qc].
  17. G. Sato-Polito and M. Kamionkowski, “Pulsar-timing measurement of the circular polarization of the stochastic gravitational-wave background,” Phys. Rev. D 106 no. 2, (2022) 023004, arXiv:2111.05867 [astro-ph.CO].
  18. G. Sato-Polito and M. Kamionkowski, “Exploring the spectrum of stochastic gravitational-wave anisotropies with pulsar timing arrays,” arXiv:2305.05690 [astro-ph.CO].
  19. V. Alba and J. Maldacena, “Primordial gravity wave background anisotropies,” JHEP 03 (2016) 115, arXiv:1512.01531 [hep-th].
  20. C. R. Contaldi, “Anisotropies of Gravitational Wave Backgrounds: A Line Of Sight Approach,” Phys. Lett. B 771 (2017) 9–12, arXiv:1609.08168 [astro-ph.CO].
  21. M. Geller, A. Hook, R. Sundrum, and Y. Tsai, “Primordial Anisotropies in the Gravitational Wave Background from Cosmological Phase Transitions,” Phys. Rev. Lett. 121 no. 20, (2018) 201303, arXiv:1803.10780 [hep-ph].
  22. N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto, and G. Tasinato, “Anisotropies and non-Gaussianity of the Cosmological Gravitational Wave Background,” Phys. Rev. D 100 no. 12, (2019) 121501, arXiv:1908.00527 [astro-ph.CO].
  23. N. Bartolo, D. Bertacca, V. De Luca, G. Franciolini, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto, and G. Tasinato, “Gravitational wave anisotropies from primordial black holes,” JCAP 02 (2020) 028, arXiv:1909.12619 [astro-ph.CO].
  24. N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto, and G. Tasinato, “Characterizing the cosmological gravitational wave background: Anisotropies and non-Gaussianity,” Phys. Rev. D 102 no. 2, (2020) 023527, arXiv:1912.09433 [astro-ph.CO].
  25. LISA Cosmology Working Group Collaboration, N. Bartolo et al., “Probing anisotropies of the Stochastic Gravitational Wave Background with LISA,” JCAP 11 (2022) 009, arXiv:2201.08782 [astro-ph.CO].
  26. G. F. Smoot, M. V. Gorenstein, and R. A. Muller, “Detection of Anisotropy in the Cosmic Black Body Radiation,” Phys. Rev. Lett. 39 (1977) 898.
  27. A. Kogut et al., “Dipole anisotropy in the COBE DMR first year sky maps,” Astrophys. J. 419 (1993) 1, arXiv:astro-ph/9312056.
  28. WMAP Collaboration, C. L. Bennett et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results,” Astrophys. J. Suppl. 148 (2003) 1–27, arXiv:astro-ph/0302207.
  29. WMAP Collaboration, G. Hinshaw et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results,” Astrophys. J. Suppl. 180 (2009) 225–245, arXiv:0803.0732 [astro-ph].
  30. Planck Collaboration, N. Aghanim et al., “Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove,” Astron. Astrophys. 571 (2014) A27, arXiv:1303.5087 [astro-ph.CO].
  31. M. Anholm, S. Ballmer, J. D. E. Creighton, L. R. Price, and X. Siemens, “Optimal strategies for gravitational wave stochastic background searches in pulsar timing data,” Phys. Rev. D 79 (2009) 084030, arXiv:0809.0701 [gr-qc].
  32. J. Gair, J. D. Romano, S. Taylor, and C. M. F. Mingarelli, “Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays,” Phys. Rev. D 90 no. 8, (2014) 082001, arXiv:1406.4664 [gr-qc].
  33. N. J. Cornish and R. van Haasteren, “Mapping the nano-Hertz gravitational wave sky,” arXiv:1406.4511 [gr-qc].
  34. C. M. F. Mingarelli, T. J. W. Lazio, A. Sesana, J. E. Greene, J. A. Ellis, C.-P. Ma, S. Croft, S. Burke-Spolaor, and S. R. Taylor, “The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries,” Nature Astron. 1 no. 12, (2017) 886–892, arXiv:1708.03491 [astro-ph.GA].
  35. S. C. Hotinli, M. Kamionkowski, and A. H. Jaffe, “The search for anisotropy in the gravitational-wave background with pulsar-timing arrays,” Open J. Astrophys. 2 no. 1, (2019) 8, arXiv:1904.05348 [astro-ph.CO].
  36. Y. Ali-Haïmoud, T. L. Smith, and C. M. F. Mingarelli, “Fisher formalism for anisotropic gravitational-wave background searches with pulsar timing arrays,” Phys. Rev. D 102 no. 12, (2020) 122005, arXiv:2006.14570 [gr-qc].
  37. Y. Ali-Haïmoud, T. L. Smith, and C. M. F. Mingarelli, “Insights into searches for anisotropies in the nanohertz gravitational-wave background,” Phys. Rev. D 103 no. 4, (2021) 042009, arXiv:2010.13958 [gr-qc].
  38. N. Pol, S. R. Taylor, and J. D. Romano, “Forecasting Pulsar Timing Array Sensitivity to Anisotropy in the Stochastic Gravitational Wave Background,” Astrophys. J. 940 no. 2, (2022) 173, arXiv:2206.09936 [astro-ph.HE].
  39. B. Allen and A. C. Ottewill, “Detection of anisotropies in the gravitational wave stochastic background,” Phys. Rev. D 56 (1997) 545–563, arXiv:gr-qc/9607068 [gr-qc].
  40. S. W. Ballmer, “A Radiometer for stochastic gravitational waves,” Class. Quant. Grav. 23 (2006) S179–S186, arXiv:gr-qc/0510096.
  41. E. Thrane, S. Ballmer, J. D. Romano, S. Mitra, D. Talukder, S. Bose, and V. Mandic, “Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers,” Phys. Rev. D 80 (2009) 122002, arXiv:0910.0858 [astro-ph.IM].
  42. A. I. Renzini and C. R. Contaldi, “Mapping Incoherent Gravitational Wave Backgrounds,” Mon. Not. Roy. Astron. Soc. 481 no. 4, (2018) 4650–4661, arXiv:1806.11360 [astro-ph.IM].
  43. E. Payne, S. Banagiri, P. Lasky, and E. Thrane, “Searching for anisotropy in the distribution of binary black hole mergers,” Phys. Rev. D 102 no. 10, (2020) 102004, arXiv:2006.11957 [astro-ph.CO].
  44. N. J. Cornish, “Mapping the gravitational wave background,” Class. Quant. Grav. 18 (2001) 4277–4292, arXiv:astro-ph/0105374.
  45. J. Baker et al., “High angular resolution gravitational wave astronomy,” Exper. Astron. 51 no. 3, (8, 2021) 1441–1470, arXiv:1908.11410 [astro-ph.HE].
  46. S. Banagiri, A. Criswell, T. Kuan, V. Mandic, J. D. Romano, and S. R. Taylor, “Mapping the gravitational-wave sky with LISA: a Bayesian spherical harmonic approach,” Mon. Not. Roy. Astron. Soc. 507 no. 4, (2021) 5451–5462, arXiv:2103.00826 [astro-ph.IM].
  47. C. R. Contaldi, M. Pieroni, A. I. Renzini, G. Cusin, N. Karnesis, M. Peloso, A. Ricciardone, and G. Tasinato, “Maximum likelihood map-making with the Laser Interferometer Space Antenna,” Phys. Rev. D 102 no. 4, (2020) 043502, arXiv:2006.03313 [astro-ph.CO].
  48. G. Mentasti and M. Peloso, “ET sensitivity to the anisotropic Stochastic Gravitational Wave Background,” JCAP 03 (2021) 080, arXiv:2010.00486 [astro-ph.CO].
  49. G. Mentasti, C. R. Contaldi, and M. Peloso, “Intrinsic Limits on the Detection of the Anisotropies of the Stochastic Gravitational Wave Background,” Phys. Rev. Lett. 131 no. 22, (2023) 221403, arXiv:2301.08074 [gr-qc].
  50. S. R. Taylor et al., “Limits on anisotropy in the nanohertz stochastic gravitational-wave background,” Phys. Rev. Lett. 115 no. 4, (2015) 041101, arXiv:1506.08817 [astro-ph.HE].
  51. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background,” Astrophys. J. Lett. 956 no. 1, (2023) L3, arXiv:2306.16221 [astro-ph.HE].
  52. Y.-K. Chu, G.-C. Liu, and K.-W. Ng, “Observation of a polarized stochastic gravitational-wave background in pulsar-timing-array experiments,” Phys. Rev. D 104 no. 12, (2021) 124018, arXiv:2107.00536 [gr-qc].
  53. R. C. Bernardo and K.-W. Ng, “Stochastic gravitational wave background phenomenology in a pulsar timing array,” Phys. Rev. D 107 no. 4, (2023) 044007, arXiv:2208.12538 [gr-qc].
  54. R. C. Bernardo and K.-W. Ng, “Constraining gravitational wave propagation using pulsar timing array correlations,” Phys. Rev. D 107 no. 10, (2023) L101502, arXiv:2302.11796 [gr-qc].
  55. G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14 (2015) 037, arXiv:1501.00127 [astro-ph.IM].
  56. G. Tasinato, “Kinematic anisotropies and pulsar timing arrays,” Phys. Rev. D 108 no. 10, (2023) 103521, arXiv:2309.00403 [gr-qc].
  57. G. Cusin and G. Tasinato, “Doppler boosting the stochastic gravitational wave background,” JCAP 08 no. 08, (2022) 036, arXiv:2201.10464 [astro-ph.CO].
  58. D. Bertacca, A. Ricciardone, N. Bellomo, A. C. Jenkins, S. Matarrese, A. Raccanelli, T. Regimbau, and M. Sakellariadou, “Projection effects on the observed angular spectrum of the astrophysical stochastic gravitational wave background,” Phys. Rev. D 101 no. 10, (2020) 103513, arXiv:1909.11627 [astro-ph.CO].
  59. L. Valbusa Dall’Armi, A. Ricciardone, and D. Bertacca, “The dipole of the astrophysical gravitational-wave background,” JCAP 11 (2022) 040, arXiv:2206.02747 [astro-ph.CO].
  60. A. K.-W. Chung, A. C. Jenkins, J. D. Romano, and M. Sakellariadou, “Targeted search for the kinematic dipole of the gravitational-wave background,” Phys. Rev. D 106 no. 8, (2022) 082005, arXiv:2208.01330 [gr-qc].
  61. D. Chowdhury, G. Tasinato, and I. Zavala, “Response of the Einstein Telescope to Doppler anisotropies,” Phys. Rev. D 107 no. 8, (2023) 083516, arXiv:2209.05770 [gr-qc].
  62. M. S. Turner, “A Tilted Universe (and Other Remnants of the Preinflationary Universe),” Phys. Rev. D 44 (1991) 3737–3748.
  63. D. Langlois and T. Piran, “Dipole anisotropy from an entropy gradient,” Phys. Rev. D 53 (1996) 2908–2919, arXiv:astro-ph/9507094.
  64. G. Domènech, R. Mohayaee, S. P. Patil, and S. Sarkar, “Galaxy number-count dipole and superhorizon fluctuations,” JCAP 10 (2022) 019, arXiv:2207.01569 [astro-ph.CO].
  65. J. Colin, R. Mohayaee, M. Rameez, and S. Sarkar, “High redshift radio galaxies and divergence from the CMB dipole,” Mon. Not. Roy. Astron. Soc. 471 no. 1, (2017) 1045–1055, arXiv:1703.09376 [astro-ph.CO].
  66. C. A. P. Bengaly, R. Maartens, and M. G. Santos, “Probing the Cosmological Principle in the counts of radio galaxies at different frequencies,” JCAP 04 (2018) 031, arXiv:1710.08804 [astro-ph.CO].
  67. T. M. Siewert, M. Schmidt-Rubart, and D. J. Schwarz, “Cosmic radio dipole: Estimators and frequency dependence,” Astron. Astrophys. 653 (2021) A9, arXiv:2010.08366 [astro-ph.CO].
  68. N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, S. Sarkar, and J. Colin, “A Test of the Cosmological Principle with Quasars,” Astrophys. J. Lett. 908 no. 2, (2021) L51, arXiv:2009.14826 [astro-ph.CO].
  69. C. Dalang and C. Bonvin, “On the kinematic cosmic dipole tension,” Mon. Not. Roy. Astron. Soc. 512 no. 3, (2022) 3895–3905, arXiv:2111.03616 [astro-ph.CO].
  70. N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, and S. Sarkar, “A Challenge to the Standard Cosmological Model,” Astrophys. J. Lett. 937 no. 2, (2022) L31, arXiv:2206.05624 [astro-ph.CO].
  71. L. Dam, G. F. Lewis, and B. J. Brewer, “Testing the cosmological principle with CatWISE quasars: a bayesian analysis of the number-count dipole,” Mon. Not. Roy. Astron. Soc. 525 no. 1, (2023) 231–245, arXiv:2212.07733 [astro-ph.CO].
  72. J. D. Wagenveld, H.-R. Klöckner, and D. J. Schwarz, “The cosmic radio dipole: Bayesian estimators on new and old radio surveys,” Astron. Astrophys. 675 (2023) A72, arXiv:2305.15335 [astro-ph.CO].
  73. A. K. Singal, “Discordance of dipole asymmetries seen in recent large radio surveys with the cosmological principle,” Mon. Not. Roy. Astron. Soc. 524 no. 3, (2023) 3636–3646, arXiv:2303.05141 [astro-ph.CO].
  74. P. J. E. Peebles, “Anomalies in physical cosmology,” Annals Phys. 447 (2022) 169159, arXiv:2208.05018 [astro-ph.CO].
  75. N. Anil Kumar and M. Kamionkowski, “All the Pretty Overlap Reduction Functions,” arXiv:2311.14159 [astro-ph.CO].
  76. M. Maggiore, Gravitational Waves: Volume 2. Oxford University Press, 03, 2018. https://doi.org/10.1093/oso/9780198570899.001.0001.
  77. C. Tiburzi, G. Hobbs, M. Kerr, W. A. Coles, S. Dai, R. N. Manchester, A. Possenti, R. M. Shannon, and X. P. You, “A study of spatial correlations in pulsar timing array data,” Monthly Notices of the Royal Astronomical Society 455 no. 4, (Dec., 2015) 4339–4350. http://dx.doi.org/10.1093/mnras/stv2143.
  78. R. W. Hellings and G. S. Downs, “Upper limits on the isotopic gravitational radiation background from pulsar timing analysis.,” Astrophys. J. Lett. 265 (Feb., 1983) L39–L42.
  79. J. D. Romano and B. Allen, “Answers to frequently asked questions about the pulsar timing array Hellings and Downs correlation curve,” arXiv:2308.05847 [gr-qc].
  80. A. Kehagias and A. Riotto, “The PTA Hellings and Downs Correlation Unmasked by Symmetries,” arXiv:2401.10680 [gr-qc].
  81. C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini, M. Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato, “Reconstructing the spectral shape of a stochastic gravitational wave background with LISA,” JCAP 11 (2019) 017, arXiv:1906.09244 [astro-ph.CO].
  82. J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “Enterprise: Enhanced numerical toolbox enabling a robust pulsar inference suite,” Zenodo, Sept., 2020. https://doi.org/10.5281/zenodo.4059815.
  83. S. R. Taylor, P. T. Baker, J. S. Hazboun, J. Simon, and S. J. Vigeland, “Enterprise˙extensions.” 2021. https://github.com/nanograv/enterprise_extensions. v2.4.3.
  84. A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A Monte Carlo approach,” Phys. Rev. D66 (2002) 103511, arXiv:astro-ph/0205436 [astro-ph]. https://arxiv.org/abs/astro-ph/0205436.
  85. A. Lewis, “Efficient sampling of fast and slow cosmological parameters,” Phys. Rev. D87 no. 10, (2013) 103529, arXiv:1304.4473 [astro-ph.CO]. https://arxiv.org/abs/1304.4473.
  86. J. Torrado and A. Lewis, “Cobaya: Code for Bayesian Analysis of hierarchical physical models,” JCAP 05 (2021) 057, arXiv:2005.05290 [astro-ph.IM].
  87. A. Lewis, “GetDist: a Python package for analysing Monte Carlo samples,” arXiv:1910.13970 [astro-ph.IM].
  88. J. D. Romano and N. J. Cornish, “Detection methods for stochastic gravitational-wave backgrounds: a unified treatment,” Living Rev. Rel. 20 no. 1, (Dec., 2017) 2, arXiv:1608.06889 [gr-qc]. http://link.springer.com/10.1007/s41114-017-0004-1.
  89. M. Tegmark, A. Taylor, and A. Heavens, “Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?,” Astrophys. J. 480 (1997) 22, arXiv:astro-ph/9603021.
  90. S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003. http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003.
  91. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget,” Astrophys. J. Lett. 951 no. 1, (2023) L10, arXiv:2306.16218 [astro-ph.HE].
  92. NANOGrav Collaboration, G. Agazie et al., “The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars,” Astrophys. J. Lett. 951 no. 1, (2023) L9, arXiv:2306.16217 [astro-ph.HE].
  93. NANOGrav Collaboration, “Noise Spectra and Stochastic Background Sensitivity Curve for the NG15-year Dataset,” Zenodo, July, 2023. https://doi.org/10.5281/zenodo.8092346.
  94. NANOGrav Collaboration, “The nanograv 15-year data set,” Zenodo, Oct., 2023. https://doi.org/10.5281/zenodo.8423265.
  95. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  96. J. S. Hazboun, J. D. Romano, and T. L. Smith, “Realistic sensitivity curves for pulsar timing arrays,” Phys. Rev. D 100 no. 10, (2019) 104028, arXiv:1907.04341 [gr-qc].
  97. J. Hazboun, J. Romano, and T. Smith, “Hasasia: A python package for pulsar timing array sensitivity curves,” Journal of Open Source Software 4 no. 42, (10, 2019) 1775. http://dx.doi.org/10.21105/joss.01775.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.