Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Interaction for Fusion-Based Place Recognition (2402.17264v1)

Published 27 Feb 2024 in cs.CV and cs.RO

Abstract: Fusion-based place recognition is an emerging technique jointly utilizing multi-modal perception data, to recognize previously visited places in GPS-denied scenarios for robots and autonomous vehicles. Recent fusion-based place recognition methods combine multi-modal features in implicit manners. While achieving remarkable results, they do not explicitly consider what the individual modality affords in the fusion system. Therefore, the benefit of multi-modal feature fusion may not be fully explored. In this paper, we propose a novel fusion-based network, dubbed EINet, to achieve explicit interaction of the two modalities. EINet uses LiDAR ranges to supervise more robust vision features for long time spans, and simultaneously uses camera RGB data to improve the discrimination of LiDAR point clouds. In addition, we develop a new benchmark for the place recognition task based on the nuScenes dataset. To establish this benchmark for future research with comprehensive comparisons, we introduce both supervised and self-supervised training schemes alongside evaluation protocols. We conduct extensive experiments on the proposed benchmark, and the experimental results show that our EINet exhibits better recognition performance as well as solid generalization ability compared to the state-of-the-art fusion-based place recognition approaches. Our open-source code and benchmark are released at: https://github.com/BIT-XJY/EINet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and C. Stachniss, “Suma++: Efficient lidar-based semantic slam,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 4530–4537, 2019.
  2. J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8218–8227, 2023.
  3. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Trans. on Robotics (TRO), vol. 38, no. 4, pp. 2053–2073, 2022.
  4. F. Cao, H. Wu, and C. Wu, “An end-to-end localizer for long-term topological localization in large-scale changing environments,” IEEE Transactions on Industrial Electronics, vol. 70, no. 5, pp. 5140–5149, 2022.
  5. X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range image-based lidar localization for autonomous vehicles,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation, 2021.
  6. P. Yin, R. A. Srivatsan, Y. Chen, X. Li, H. Zhang, L. Xu, L. Li, Z. Jia, J. Ji, and Y. He, “Mrs-vpr: a multi-resolution sampling based global visual place recognition method,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation, 2019.
  7. R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn architecture for weakly supervised place recognition,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2016.
  8. N. Keetha, A. Mishra, J. Karhade, K. M. Jatavallabhula, S. Scherer, M. Krishna, and S. Garg, “Anyloc: Towards universal visual place recognition,” IEEE Robotics and Automation Letters, 2023.
  9. S. Zhu, L. Yang, C. Chen, M. Shah, X. Shen, and H. Wang, “R2former: Unified retrieval and reranking transformer for place recognition,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2023.
  10. G. Berton, G. Trivigno, B. Caputo, and C. Masone, “Eigenplaces: Training viewpoint robust models for visual place recognition,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision, 2023.
  11. S. Izquierdo and J. Civera, “Optimal transport aggregation for visual place recognition,” arXiv preprint arXiv:2311.15937, 2023.
  12. M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2018.
  13. Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, and Y.-H. Liu, “Lpd-net: 3d point cloud learning for large-scale place recognition and environment analysis,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision, 2019.
  14. X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, and C. Stachniss, “Overlapnet: Loop closing for lidar-based slam,” in Proc. of Robotics: Science and Systems, 2021.
  15. J. Ma, G. Xiong, J. Xu, and X. Chen, “Cvtnet: A cross-view transformer network for lidar-based place recognition in autonomous driving environments,” IEEE Trans. on Industrial Informatics (TII), 2023.
  16. D. Kong, X. Li, and Q. Xu, “Sc_lpr: Semantically consistent lidar place recognition based on chained cascade network in long-term dynamic environments,” IEEE Trans. on Image Processing (TIP), 2024.
  17. Y. Lu, F. Yang, F. Chen, and D. Xie, “Pic-net: Point cloud and image collaboration network for large-scale place recognition,” arXiv preprint arXiv:2008.00658, 2020.
  18. J. Komorowski, M. Wysoczańska, and T. Trzcinski, “Minkloc++: lidar and monocular image fusion for place recognition,” in Proc. of the Intl. Conf. on Neural Networks (IJCNN), 2021.
  19. H. Lai, P. Yin, and S. Scherer, “Adafusion: Visual-lidar fusion with adaptive weights for place recognition,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12038–12045, 2022.
  20. W. Liu, J. Fei, and Z. Zhu, “Mff-pr: Point cloud and image multi-modal feature fusion for place recognition,” in In proc. of IEEE Intl. Symp. on Mixed and Augmented Reality (ISMAR), 2022.
  21. Z. Zhou, J. Xu, G. Xiong, and J. Ma, “Lcpr: A multi-scale attention-based lidar-camera fusion network for place recognition,” IEEE Robotics and Automation Letters, 2023.
  22. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020.
  23. S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, “Visual place recognition: A survey,” IEEE Trans. on Robotics (TRO), vol. 32, no. 1, pp. 1–19, 2015.
  24. H. Yin, X. Xu, S. Lu, X. Chen, R. Xiong, S. Shen, C. Stachniss, and Y. Wang, “A survey on global lidar localization: Challenges, advances and open problems,” arXiv preprint arXiv:2302.07433, 2023.
  25. X. Hu, Z. Zhou, H. Li, Y. Hu, F. Gu, J. Kersten, H. Fan, and F. Klan, “Location reference recognition from texts: A survey and comparison,” ACM Computing Surveys, vol. 56, no. 5, pp. 1–37, 2023.
  26. R. Arandjelovic and A. Zisserman, “All about vlad,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2013.
  27. D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,” IEEE Trans. on Robotics (TRO), vol. 28, no. 5, pp. 1188–1197, 2012.
  28. L. He, X. Wang, and H. Zhang, “M2dp: A novel 3d point cloud descriptor and its application in loop closure detection,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2016.
  29. G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2018.
  30. K. P. Cop, P. V. Borges, and R. Dubé, “Delight: An efficient descriptor for global localisation using lidar intensities,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation, 2018.
  31. Z. Chen, O. Lam, A. Jacobson, and M. Milford, “Convolutional neural network-based place recognition,” arXiv preprint arXiv:1411.1509, 2014.
  32. M. Leyva-Vallina, N. Strisciuglio, and N. Petkov, “Generalized contrastive optimization of siamese networks for place recognition,” arXiv preprint arXiv:2103.06638, 2021.
  33. S. Garg, T. Fischer, and M. Milford, “Where is your place, visual place recognition?,” arXiv preprint arXiv:2103.06443, 2021.
  34. A. Khaliq, M. Milford, and S. Garg, “Multires-netvlad: Augmenting place recognition training with low-resolution imagery,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3882–3889, 2022.
  35. J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen, “Overlaptransformer: An efficient and yaw-angle-invariant transformer network for lidar-based place recognition,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6958–6965, 2022.
  36. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2017.
  37. J. Ma, X. Chen, J. Xu, and G. Xiong, “Seqot: A spatial-temporal transformer network for place recognition using sequential lidar data,” IEEE Trans. on Industrial Electronics (TIE), 2022.
  38. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. of the Advances in Neural Information Processing Systems (NIPS), vol. 30, 2017.
  39. L. Luo, S. Zheng, Y. Li, Y. Fan, B. Yu, S.-Y. Cao, J. Li, and H.-L. Shen, “Bevplace: Learning lidar-based place recognition using bird’s eye view images,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision, 2023.
  40. Y. Cui, X. Chen, Y. Zhang, J. Dong, Q. Wu, and F. Zhu, “Bow3d: Bag of words for real-time loop closing in 3d lidar slam,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2828–2835, 2023.
  41. Y. Xia, L. Shi, Z. Ding, J. F. Henriques, and D. Cremers, “Text2loc: 3d point cloud localization from natural language,” arXiv preprint arXiv:2311.15977, 2023.
  42. S. Zheng, Y. Li, Z. Yu, B. Yu, S.-Y. Cao, M. Wang, J. Xu, R. Ai, W. Gu, L. Luo, et al., “I2p-rec: Recognizing images on large-scale point cloud maps through bird’s eye view projections,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2023.
  43. A. J. Lee, S. Song, H. Lim, W. Lee, and H. Myung, “(l⁢c)2superscript𝑙𝑐2(lc)^{2}( italic_l italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT: Lidar-camera loop constraints for cross-modal place recognition,” IEEE Robotics and Automation Letters, 2023.
  44. H. Yu, W. Zhen, W. Yang, J. Zhang, and S. Scherer, “Monocular camera localization in prior lidar maps with 2d-3d line correspondences,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2020.
  45. P. Yin, L. Xu, J. Zhang, H. Choset, and S. Scherer, “i3dloc: Image-to-range cross-domain localization robust to inconsistent environmental conditions,” arXiv preprint arXiv:2105.12883, 2021.
  46. Y. Pan, X. Xu, W. Li, Y. Cui, Y. Wang, and R. Xiong, “Coral: Colored structural representation for bi-modal place recognition,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2021.
  47. Y. Wei, L. Zhao, W. Zheng, Z. Zhu, Y. Rao, G. Huang, J. Lu, and J. Zhou, “Surrounddepth: Entangling surrounding views for self-supervised multi-camera depth estimation,” in Proc. of the Conf. on Robot Learning (CoRL), 2023.
  48. T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth and ego-motion from video,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2017.
  49. K. Cai, B. Wang, and C. X. Lu, “Autoplace: Robust place recognition with single-chip automotive radar,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation, 2022.
  50. J. Cui and X. Chen, “Ccl: Continual contrastive learning for lidar place recognition,” IEEE Robotics and Automation Letters, vol. 8, no. 8, pp. 4433–4440, 2023.
  51. J. Knights, P. Moghadam, M. Ramezani, S. Sridharan, and C. Fookes, “Incloud: Incremental learning for point cloud place recognition,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com