Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multicellular simulations with shape and volume constraints using optimal transport (2402.17086v3)

Published 26 Feb 2024 in q-bio.QM, cs.NA, math.DS, math.NA, and physics.bio-ph

Abstract: Many living and physical systems such as cell aggregates, tissues or bacterial colonies behave as unconventional systems of particles that are strongly constrained by volume exclusion and shape interactions. Understanding how these constraints lead to macroscopic self-organized structures is a fundamental question in e.g. developmental biology. To this end, various types of computational models have been developed. Here, we introduce a new framework based on optimal transport theory to model particle systems with arbitrary dynamical shapes and deformability properties. Our method builds upon the pioneering work of Brenier on incompressible fluids and its recent applications to materials science. It lets us specify the shapes and volumes of individual cells and supports a wide range of interaction mechanisms, while automatically taking care of the volume exclusion constraint at an affordable numerical cost. We showcase the versatility of this approach by reproducing several classical systems in computational biology. Our Python code is freely available at \url{https://iceshot.readthedocs.io/}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (141)
  1. “Generalized Balanced Power Diagrams for 3D Representations of Polycrystals” In Philosophical Magazine 95.9, 2015, pp. 1016–1028 DOI: 10.1080/14786435.2015.1015469
  2. Silvanus Alt, Poulami Ganguly and Guillaume Salbreux “Vertex Models: From Cell Mechanics to Tissue Morphogenesis” In Phil. Trans. R. Soc. B 372.1720, 2017, pp. 20150520 DOI: 10.1098/rstb.2015.0520
  3. Peter B. Armstrong “Cell Sorting Out: The Self-Assembly of Tissues In Vitro” In Critical Reviews in Biochemistry and Molecular Biology 24.2, 1989, pp. 119–149 DOI: 10.3109/10409238909086396
  4. Utkarsh Ayachit “The paraview guide: a parallel visualization application” Kitware, Inc., 2015
  5. “Active Vertex Model for Cell-Resolution Description of Epithelial Tissue Mechanics” In PLoS Comput. Biol. 13.6, 2017, pp. e1005569 DOI: 10.1371/journal.pcbi.1005569
  6. “Active Particles in Complex and Crowded Environments” In Rev. Mod. Phys. 88.4, 2016, pp. 045006 DOI: 10.1103/RevModPhys.88.045006
  7. “When Time Matters: Poissonian Cellular Potts Models Reveal Nonequilibrium Kinetics of Cell Sorting”, 2023 arXiv:2306.04443 [cond-mat, physics:physics]
  8. “A Density-Independent Rigidity Transition in Biological Tissues” In Nature Physics 11.12, 2015, pp. 1074–1079 DOI: 10.1038/nphys3471
  9. “Motility-Driven Glass and Jamming Transitions in Biological Tissues” In Physical Review X 6.2, 2016, pp. 021011 DOI: 10.1103/PhysRevX.6.021011
  10. “Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics” In Bull. Math. Biol. 72.7, 2010, pp. 1696–1731 DOI: 10.1007/s11538-009-9498-3
  11. “Laguerre Tessellations and Polycrystalline Microstructures: A Fast Algorithm for Generating Grains of given Volumes” In Philosophical Magazine 100.21, 2020, pp. 2677–2707 DOI: 10.1080/14786435.2020.1790053
  12. David P. Bourne “MATLAB-SDOT” URL: https://github.com/DPBourne/MATLAB-SDOT
  13. David P. Bourne, Bernhard Schmitzer and Benedikt Wirth “Semi-Discrete Unbalanced Optimal Transport and Quantization”, 2018 arXiv:1808.01962
  14. D.P. Bourne, M. Pearce and S.M. Roper “Geometric Modelling of Polycrystalline Materials: Laguerre Tessellations and Periodic Semi-Discrete Optimal Transport” In Mechanics Research Communications 127, 2023, pp. 104023 DOI: 10.1016/j.mechrescom.2022.104023
  15. “A Geometric Approximation to the Euler Equations: The Vlasov-Monge-Ampère System” In GAFA, Geom. funct. anal. 14.6, 2004, pp. 1182–1218 DOI: 10.1007/s00039-004-0488-1
  16. Yann Brenier “A Combinatorial Algorithm for the Euler Equations of Incompressible Flows” In Computer Methods in Applied Mechanics and Engineering 75.1-3, 1989, pp. 325–332 DOI: 10.1016/0045-7825(89)90033-9
  17. Yann Brenier “Polar Factorization and Monotone Rearrangement of Vector‐valued Functions” In Comm. Pure Appl. Math. 44.4, 1991, pp. 375–417 DOI: 10.1002/cpa.3160440402
  18. Yann Brenier “Derivation of the Euler Equations from a Caricature of Coulomb Interaction” In Comm. Math. Phys. 212.1, 2000, pp. 93–104 DOI: 10.1007/s002200000204
  19. Yann Brenier “Optimal Transportation of Particles, Fluids and Currents”, 2015, pp. 59–85 DOI: 10.2969/aspm/06710059
  20. G. Wayne Brodland “The Differential Interfacial Tension Hypothesis (DITH): A Comprehensive Theory for the Self-Rearrangement of Embryonic Cells and Tissues” In Journal of Biomechanical Engineering 124.2, 2002, pp. 188–197 DOI: 10.1115/1.1449491
  21. G Wayne Brodland “Computational Modeling of Cell Sorting, Tissue Engulfment, and Related Phenomena: A Review” In Applied Mechanics Reviews 57.1, 2004, pp. 47–76 DOI: 10.1115/1.1583758
  22. G Wayne Brodland and Helen H Chen “The Mechanics of Cell Sorting and Envelopment” In Journal of Biomechanics 33.7, 2000, pp. 845–851 DOI: 10.1016/S0021-9290(00)00011-7
  23. G. Wayne Brodland and Helen H. Chen “The Mechanics of Heterotypic Cell Aggregates: Insights From Computer Simulations” In Journal of Biomechanical Engineering 122.4, 2000, pp. 402–407 DOI: 10.1115/1.1288205
  24. “Bridging from Single to Collective Cell Migration: A Review of Models and Links to Experiments” In PLoS Comput. Biol. 16.12, 2020, pp. e1008411 DOI: 10.1371/journal.pcbi.1008411
  25. Luis Caffarelli “Allocation Maps with General Cost Functions” In Partial Differential Equations and Applications. Collected Papers in Honor of Carlo Pucci CRC Press, 1996
  26. “A Population Dynamics Model of Cell-Cell Adhesion Incorporating Population Pressure and Density Saturation” In J. Theoret. Biol. 474, 2019, pp. 14–24 DOI: 10.1016/j.jtbi.2019.04.023
  27. “Propagation of Chaos: A Review of Models, Methods and Applications. I. Models and Methods” In Kinet. Relat. Models 15.6, 2022, pp. 895–1015 DOI: 10.3934/krm.2022017
  28. “Propagation of Chaos: A Review of Models, Methods and Applications. II. Applications” In Kinet. Relat. Models 15.6, 2022, pp. 1017–1173 DOI: 10.3934/krm.2022018
  29. “Kernel Operations on the GPU, with Autodiff, without Memory Overflows” In J. Mach. Learn. Res. 22.74, 2021, pp. 1–6 URL: https://www.kernel-operations.io/
  30. “Collective Motion of Self-Propelled Particles Interacting without Cohesion” In Phys. Rev. E 77.4, 2008, pp. 046113 DOI: 10.1103/PhysRevE.77.046113
  31. Helen H. Chen and G. Wayne Brodland “Cell-Level Finite Element Studies of Viscous Cells in Planar Aggregates” In Journal of Biomechanical Engineering 122.4, 2000, pp. 394–401 DOI: 10.1115/1.1286563
  32. “Mechanical Forces Drive Ordered Patterning of Hair Cells in the Mammalian Inner Ear” In Nat. Commun. 11.1, 2020, pp. 5137 DOI: 10.1038/s41467-020-18894-8
  33. “Chaste: Cancer, Heart and Soft Tissue Environment” In Journal of Open Source Software 5.47, 2020, pp. 1848 DOI: 10.21105/joss.01848
  34. “Dynamics of Bacterial Swarming” In Biophysical Journal 98.10, 2010, pp. 2082–2090 DOI: 10.1016/j.bpj.2010.01.053
  35. Pierre-Gilles De Gennes, Françoise Brochard-Wyart and David Quéré “Capillarity and Wetting Phenomena” New York, NY: Springer New York, 2004
  36. “Power Particles: An Incompressible Fluid Solver Based on Power Diagrams” In ACM Trans. Graph. 34.4, 2015, pp. 1–11 DOI: 10.1145/2766901
  37. Frédéric De Gournay, Jonas Kahn and Léo Lebrat “Differentiation and Regularity of Semi-Discrete Optimal Transport with Respect to the Parameters of the Discrete Measure” In Numer. Math. 141.2, 2019, pp. 429–453 DOI: 10.1007/s00211-018-1000-4
  38. Guido De Philippis and Alessio Figalli “The Monge–Ampère Equation and Its Link to Optimal Transportation” In Bull. Amer. Math. Soc. 51.4, 2014, pp. 527–580 DOI: 10.1090/S0273-0979-2014-01459-4
  39. Pierre Degond, Amic Frouvelle and Sara Merino-Aceituno “A New Flocking Model through Body Attitude Coordination” In Math. Models Methods Appl. Sci. 27.06, 2017, pp. 1005–1049 DOI: 10.1142/S0218202517400085
  40. Antoine Diez “SiSyPHE: A Python Package for the Simulation of Systems of Interacting Mean-Field Particles with High Efficiency” In Journal of Open Source Software 6.65, 2021, pp. 3653 DOI: 10.21105/joss.03653
  41. “The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing” In Current Biology 17.24, 2007, pp. 2095–2104 DOI: 10.1016/j.cub.2007.11.049
  42. Jean Feydy “Geometric Data Analysis, beyond Convolutions”, 2020
  43. “Optimal transport for diffeomorphic registration” In Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, 2017, pp. 291–299 Springer
  44. “Fast geometric learning with symbolic matrices” In Advances in Neural Information Processing Systems 33, 2020, pp. 14448–14462
  45. “Interpolating between Optimal Transport and MMD Using Sinkhorn Divergences” In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics PMLR, 2019, pp. 2681–2690 URL: https://proceedings.mlr.press/v89/feydy19a.html
  46. Thomas O. Gallouët and Quentin Mérigot “A Lagrangian Scheme à La Brenier for the Incompressible Euler Equations” In Foundations of Computational Mathematics 18.4, 2018, pp. 835–865 DOI: 10.1007/s10208-017-9355-y
  47. Wilfrid Gangbo and Robert J. McCann “The Geometry of Optimal Transportation” In Acta Math. 177.2, 1996, pp. 113–161 DOI: 10.1007/BF02392620
  48. “PhysiCell: An Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems” In PLoS Comput. Biol. 14.2, 2018, pp. e1005991 DOI: 10.1371/journal.pcbi.1005991
  49. James A. Glazier and François Graner “Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells” In Phys. Rev. E 47.3, 1993, pp. 2128–2154 DOI: 10.1103/PhysRevE.47.2128
  50. Blanca González-Bermúdez, Gustavo V. Guinea and Gustavo R. Plaza “Advances in Micropipette Aspiration: Applications in Cell Biomechanics, Models, and Extended Studies” In Biophysical Journal 116.4, 2019, pp. 587–594 DOI: 10.1016/j.bpj.2019.01.004
  51. David S. Goodsell “Inside a Living Cell” In Trends in Biochemical Sciences 16, 1991, pp. 203–206 DOI: 10.1016/0968-0004(91)90083-8
  52. François Graner and James A. Glazier “Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model” In Phys. Rev. Lett. 69.13, 1992, pp. 2013–2016 DOI: 10.1103/PhysRevLett.69.2013
  53. Robert Großmann, Igor S. Aranson and Fernando Peruani “A Particle-Field Approach Bridges Phase Separation and Collective Motion in Active Matter” In Nature Communications 11.1, 2020, pp. 5365 DOI: 10.1038/s41467-020-18978-5
  54. “Micropipette Aspiration: A Unique Tool for Exploring Cell and Tissue Mechanics in Vivo” In Methods in Cell Biology 139 Academic Press, 2017, pp. 187–201
  55. “Array programming with NumPy” In Nature 585.7825 Nature Publishing Group UK London, 2020, pp. 357–362
  56. “Tiling Mechanisms of the Drosophila Compound Eye through Geometrical Tessellation” In Current Biology 32.9, 2022, pp. 2101–2109.e5 DOI: 10.1016/j.cub.2022.03.046
  57. “The Role of Actin Protrusion Dynamics in Cell Migration through a Degradable Viscoelastic Extracellular Matrix: Insights from a Computational Model” In PLoS Comput. Biol. 16.1, 2020, pp. e1007250 DOI: 10.1371/journal.pcbi.1007250
  58. Tetsuya Hiraiwa, Kyohei Shitara and Takao Ohta “Dynamics of a Deformable Self-Propelled Particle in Three Dimensions” In Soft Matter 7.7, 2011, pp. 3083–3086 DOI: 10.1039/C0SM00856G
  59. Hisao Honda “Description of Cellular Patterns by Dirichlet Domains: The Two-Dimensional Case” In J. Theoret. Biol. 72.3, 1978, pp. 523–543 DOI: 10.1016/0022-5193(78)90315-6
  60. Hisao Honda, Masaharu Tanemura and Tatsuzo Nagai “A Three-Dimensional Vertex Dynamics Cell Model of Space-Filling Polyhedra Simulating Cell Behavior in a Cell Aggregate” In J. Theoret. Biol. 226.4, 2004, pp. 439–453 DOI: 10.1016/j.jtbi.2003.10.001
  61. John D Hunter “Matplotlib: A 2D graphics environment” In Computing in science & engineering 9.03 IEEE Computer Society, 2007, pp. 90–95
  62. “Embryo Mechanics Cartography: Inference of 3D Force Atlases from Fluorescence Microscopy” In Nat. Methods 20.12, 2023, pp. 1989–1999 DOI: 10.1038/s41592-023-02084-7
  63. “An Ex Vivo System to Study Cellular Dynamics Underlying Mouse Peri-Implantation Development” In Developmental Cell 57.3, 2022, pp. 373–386.e9 DOI: 10.1016/j.devcel.2021.12.023
  64. “Bubbly Vertex Dynamics: A Dynamical and Geometrical Model for Epithelial Tissues with Curved Cell Shapes” In Phys. Rev. E 90.5, 2014, pp. 052711 DOI: 10.1103/PhysRevE.90.052711
  65. “Mean Field Limit for Stochastic Particle Systems” In Active Particles, Volume 1 : Advances in Theory, Models, and Applications, Modeling and Simulation in Science, Engineering and Technology Birkhäuser Basel, 2017, pp. 379–402 DOI: 10.1007/978-3-319-49996-3˙10
  66. Yousef Jamali, Mohammad Azimi and Mohammad R. K. Mofrad “A Sub-Cellular Viscoelastic Model for Cell Population Mechanics” In PLoS ONE 5.8, 2010, pp. e12097 DOI: 10.1371/journal.pone.0012097
  67. “cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology” In Nature Methods 12.1, 2015, pp. 85–91 DOI: 10.1038/nmeth.3204
  68. Mark Kac “Foundations of Kinetic Theory” In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 3 University of California Press Berkeley and Los Angeles, California, 1956, pp. 171–197
  69. “Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern” In PLOS ONE 10.5, 2015, pp. e0126484 DOI: 10.1371/journal.pone.0126484
  70. “Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell Nuclei to Epithelium Morphology” In Front. Physiol. 7, 2016 DOI: 10.3389/fphys.2016.00551
  71. “Autocrine IL-6 Drives Cell and Extracellular Matrix Anisotropy in Scar Fibroblasts” In Matrix Biology 123, 2023, pp. 1–16 DOI: 10.1016/j.matbio.2023.08.004
  72. Jun Kitagawa, Quentin Mérigot and Boris Thibert “Convergence of a Newton Algorithm for Semi-Discrete Optimal Transport” In J. Eur. Math. Soc. 21.9, 2019, pp. 2603–2651 DOI: 10.4171/JEMS/889
  73. “MorphoSim: An Efficient and Scalable Phase-Field Framework for Accurately Simulating Multicellular Morphologies” In npj Systems Biology and Applications 9.1, 2023, pp. 6 DOI: 10.1038/s41540-023-00265-w
  74. Dirk Alexander Kulawiak, Brian A. Camley and Wouter-Jan Rappel “Modeling Contact Inhibition of Locomotion of Colliding Cells Migrating on Micropatterned Substrates” In PLoS Comput. Biol. 12.12, 2016, pp. e1005239 DOI: 10.1371/journal.pcbi.1005239
  75. “Lagrangian Discretization of Crowd Motion and Linear Diffusion” In SIAM J. Numer. Anal. 58.4, 2020, pp. 2093–2118 DOI: 10.1137/19M1274201
  76. “Cell Surface Mechanics and the Control of Cell Shape, Tissue Patterns and Morphogenesis” In Nat. Rev. Mol. Cell Biol. 8.8, 2007, pp. 633–644 DOI: 10.1038/nrm2222
  77. “Derivation and Simulation of a Computational Model of Active Cell Populations: How Overlap Avoidance, Deformability, Cell-Cell Junctions and Cytoskeletal Forces Affect Alignment”, 2024 DOI: 10.1101/2024.02.02.578535
  78. Bruno Lévy, Roya Mohayaee and Sebastian Hausegger “A fast semidiscrete optimal transport algorithm for a unique reconstruction of the early Universe” In Monthly Notices of the Royal Astronomical Society 506.1 Oxford University Press, 2021, pp. 1165–1185
  79. Bruno Lévy “Geogram” URL: https://github.com/BrunoLevy/geogram
  80. Bruno Lévy “Partial Optimal Transport for a Constant-Volume Lagrangian Mesh with Free Boundaries” In J. Comput. Phys. 451, 2022, pp. 110838 DOI: 10.1016/j.jcp.2021.110838
  81. “L p Centroidal Voronoi Tessellation and Its Applications” In ACM Trans. Graph. 29.4, 2010, pp. 1–11 DOI: 10.1145/1778765.1778856
  82. E.H. Mansfield, H.R. Sepangi and E.A. Eastwood “Equilibrium and Mutual Attraction or Repulsion of Objects Supported by Surface Tension” In Philosophical Transactions: Mathematical, Physical and Engineering Sciences 335.1726, 1997, pp. 869–919
  83. “Handling Congestion in Crowd Motion Modeling” In Networks & Heterogeneous Media 6.3, 2011, pp. 485–519 DOI: 10.3934/nhm.2011.6.485
  84. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells” In Science 338.6104, 2012, pp. 253–256 DOI: 10.1126/science.1225399
  85. Henry P McKean “Propagation of Chaos for a Class of Non-Linear Parabolic Equations” In Lecture Series in Differential Equations, Volume 2, Van Nostrand Mathematical Studies 19 Van Nostrand Reinhold Company, 1969, pp. 177–194
  86. “Goo Is a Python-based Blender Extension for Modeling Biological Cells, Tissues, and Embryos”, 2023 DOI: 10.5281/ZENODO.10296203
  87. Quentin Mérigot “A multiscale approach to optimal transport” In Computer Graphics Forum 30.5, 2011, pp. 1583–1592 Wiley Online Library
  88. “Pysdot” URL: https://github.com/sd-ot/pysdot
  89. Quentin Merigot, Filippo Santambrogio and Clément Sarrazin “Non-Asymptotic Convergence Bounds for Wasserstein Approximation Using Point Clouds”, 2021 arXiv: http://arxiv.org/abs/2106.07911
  90. Jocelyn Meyron “Sdot” URL: https://github.com/nyorem/sdot
  91. “Mechanism of Interdigitation Formation at Apical Boundary of MDCK Cell” In iScience 26.5, 2023, pp. 106594 DOI: 10.1016/j.isci.2023.106594
  92. “Apical-Driven Cell Sorting Optimised for Tissue Geometry Ensures Robust Patterning” In Preprint, 2023 DOI: 10.1101/2023.05.16.540918
  93. “A Numerical Algorithm for Modeling Cellular Rearrangements in Tissue Morphogenesis” In Commun. Biol. 5.1, 2022, pp. 239 DOI: 10.1038/s42003-022-03174-6
  94. “Electrowetting: Fundamental Principles and Practical Applications” Weinheim: Wiley-VCH, 2019
  95. “Collective Motion of Cells: From Experiments to Models” In Integr. Biol. 6.9, 2014, pp. 831–854 DOI: 10.1039/C4IB00115J
  96. Sylvie Méléard “Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models” In Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Mathematics 1627 Springer-Verlag Berlin Heidelberg, 1996
  97. “On the Reaction–Diffusion Type Modelling of the Self-Propelled Object Motion” In Scientific Reports 13.1, 2023, pp. 12633 DOI: 10.1038/s41598-023-39395-w
  98. Andrea Natale “Gradient Flows of Interacting Laguerre Cells as Discrete Porous Media Flows”, 2023 arXiv:2304.05069
  99. Makiko Nonomura “Study on Multicellular Systems Using a Phase Field Model” In PLoS ONE 7.4, 2012, pp. e33501 DOI: 10.1371/journal.pone.0033501
  100. Nvidia “NVIDIA Omniverse™” URL: https://developer.nvidia.com/omniverse
  101. Takao Ohta “Dynamics of Deformable Active Particles” In Journal of the Physical Society of Japan 86.7, 2017, pp. 072001 DOI: 10.7566/JPSJ.86.072001
  102. Takao Ohta, Takahiro Ohkuma and Kyohei Shitara “Deformation of a Self-Propelled Domain in an Excitable Reaction-Diffusion System” In Physical Review E 80.5, 2009, pp. 056203 DOI: 10.1103/PhysRevE.80.056203
  103. “Comparing Individual-Based Approaches to Modelling the Self-Organization of Multicellular Tissues” In PLoS Comput. Biol. 13.2, 2017, pp. e1005387 DOI: 10.1371/journal.pcbi.1005387
  104. “Level Set Methods and Dynamic Implicit Surfaces”, Applied Mathematical Sciences 153 New York Berlin Heidelberg: Springer, 2003
  105. Stanley Osher and James A Sethian “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations” In J. Comput. Phys. 79.1, 1988, pp. 12–49 DOI: 10.1016/0021-9991(88)90002-2
  106. “Automatic differentiation in pytorch”, 2017
  107. Charles S. Peskin “The Immersed Boundary Method” In Acta Numerica 11, 2002, pp. 479–517 DOI: 10.1017/S0962492902000077
  108. “Computational Optimal Transport: With Applications to Data Science” In Foundations and Trends® in Machine Learning 11.5-6, 2019, pp. 355–607 DOI: 10.1561/2200000073
  109. “Convergence Proof for First-Order Position-Based Dynamics: An Efficient Scheme for Inequality Constrained ODEs”, 2023 arXiv: http://arxiv.org/abs/2310.01215
  110. Inigo Quilez “Raymarching primitives”, https://iquilezles.org/articles/distfunctions/, 2013
  111. “Meshless Voronoi on the GPU” In ACM Transactions on Graphics (TOG) 37.6 ACM New York, NY, USA, 2018, pp. 1–12
  112. Katarzyna A. Rejniak “An Immersed Boundary Framework for Modelling the Growth of Individual Cells: An Application to the Early Tumour Development” In J. Theoret. Biol. 247.1, 2007, pp. 186–204 DOI: 10.1016/j.jtbi.2007.02.019
  113. “Active Deformable Cells Undergo Cell Shape Transition Associated with Percolation of Topological Defects”, 2023 arXiv:2303.03580
  114. Filippo Santambrogio “Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling” 87, Progress in Nonlinear Differential Equations and Their Applications Springer International Publishing, 2015 DOI: 10.1007/978-3-319-20828-2
  115. Clément Sarrazin “Lagrangian Discretization of Variational Mean Field Games” In SIAM J. Control Optim. 60.3, 2022, pp. 1365–1392 DOI: 10.1137/20M1377291
  116. “Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming” In Cell 176.4 Elsevier, 2019, pp. 928–943
  117. Bernhard Schmitzer “A sparse multiscale algorithm for dense optimal transport” In Journal of Mathematical Imaging and Vision 56 Springer, 2016, pp. 238–259
  118. Bernhard Schmitzer “Stabilized sparse scaling algorithms for entropy regularized transport problems” In SIAM Journal on Scientific Computing 41.3 SIAM, 2019, pp. A1443–A1481
  119. “General, Open-Source Vertex Modeling in Biological Applications Using Tissue Forge” In Scientific Reports 13.1, 2023, pp. 17886 DOI: 10.1038/s41598-023-45127-x
  120. Sungrim Seirin-Lee, Kazunori Yamamoto and Akatsuki Kimura “The Extra-Embryonic Space and the Local Contour Are Crucial Geometric Constraints Regulating Cell Arrangement” In Development 149.9, 2022, pp. dev200401 DOI: 10.1242/dev.200401
  121. Shuvasree SenGupta, Carole A. Parent and James E. Bear “The Principles of Directed Cell Migration” In Nat. Rev. Mol. Cell Biol. 22.8, 2021, pp. 529–547 DOI: 10.1038/s41580-021-00366-6
  122. James Albert Sethian “Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science”, Cambridge Monographs on Applied and Computational Mathematics 3 Cambridge, U.K. ; New York: Cambridge University Press, 1999
  123. “An Analysis Toolbox to Explore Mesenchymal Migration Heterogeneity Reveals Adaptive Switching between Distinct Modes” In eLife 5.e11384, 2016 DOI: 10.7554/eLife.11384
  124. “Accurate point cloud registration with robust optimal transport” In Advances in Neural Information Processing Systems 34, 2021, pp. 5373–5389
  125. Anna Song “Generation of tubular and membranous shape textures with curvature functionals” In Journal of Mathematical Imaging and Vision 64.1 Springer, 2022, pp. 17–40
  126. “Morpheus: A User-Friendly Modeling Environment for Multiscale and Multicellular Systems Biology” In Bioinformatics 30.9, 2014, pp. 1331–1332 DOI: 10.1093/bioinformatics/btt772
  127. “PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)” In Journal of Open Source Software 4.37 The Open Journal, 2019, pp. 1450
  128. D. Sulsky, S. Childress and J.K. Percus “A Model of Cell Sorting” In J. Theoret. Biol. 106.3, 1984, pp. 275–301 DOI: 10.1016/0022-5193(84)90031-6
  129. “Multi-Scale Modeling of Tissues Using CompuCell3D” In Methods in Cell Biology 110 Elsevier, 2012, pp. 325–366
  130. Jean-Marie Swiecicki, Olesksii Sliusarenko and Douglas B. Weibel “From Swimming to Swarming: Escherichia Coli Cell Motility in Two-Dimensions” In Integr. Biol. 5.12, 2013, pp. 1490 DOI: 10.1039/c3ib40130h
  131. Alain-Sol Sznitman “Topics in Propagation of Chaos” In Éc. Été Probab. St.-Flour XIX—1989 Springer, 1991, pp. 165–251
  132. “Nectins Establish a Checkerboard-Like Cellular Pattern in the Auditory Epithelium” In Science 333.6046, 2011, pp. 1144–1147 DOI: 10.1126/science.1208467
  133. Alejandro Torres-Sánchez, Max Kerr Winter and Guillaume Salbreux “Interacting Active Surfaces: A Model for Three-Dimensional Cell Aggregates” In PLoS Comput. Biol. 18.12, 2022, pp. e1010762 DOI: 10.1371/journal.pcbi.1010762
  134. “Mechanics of Tissue Compaction” In Semin. Cell Dev. Biol. 47–48, 2015, pp. 110–117 DOI: 10.1016/j.semcdb.2015.08.001
  135. “Simulating Tissue Mechanics with Agent-Based Models: Concepts, Perspectives and Some Novel Results” In Computational Particle Mechanics 2.4, 2015, pp. 401–444 DOI: 10.1007/s40571-015-0082-3
  136. “Novel Type of Phase Transition in a System of Self-Driven Particles” In Phys. Rev. Lett. 75.6, 1995, pp. 1226–1229 DOI: 10.1103/PhysRevLett.75.1226
  137. Cédric Villani “Topics in Optimal Transportation”, Graduate Studies in Mathematics 58 American Mathematical Society, 2003
  138. Cédric Villani “Optimal Transport, Old and New”, Grundlehren Der Mathematischen Wissenschaften 338 Springer-Verlag Berlin Heidelberg, 2009 DOI: 10.1007/978-3-540-71050-9
  139. “Centroidal Power Diagrams with Capacity Constraints: Computation, Applications, and Extension” In ACM Transactions on Graphics 35.6, 2016, pp. 1–12 DOI: 10.1145/2980179.2982428
  140. “Modeling Cellular Deformations Using the Level Set Formalism” In BMC Syst. Biol. 2.1, 2008, pp. 68 DOI: 10.1186/1752-0509-2-68
  141. “Dynamic Cellular Finite-Element Method for Modelling Large-Scale Cell Migration and Proliferation under the Control of Mechanical and Biochemical Cues: A Study of Re-Epithelialization” In J. R. Soc. Interface. 14.129, 2017, pp. 20160959 DOI: 10.1098/rsif.2016.0959
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Antoine Diez (11 papers)
  2. Jean Feydy (11 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.