Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Initial-and-Final-State Opacity for Discrete Event Systems (2402.17000v1)

Published 26 Feb 2024 in cs.FL, cs.SY, and eess.SY

Abstract: Opacity is a general framework modeling security properties of systems interacting with a passive attacker by asserting that a part of the systems behaviour remains secret. In initial-and-final-state opacity (IFO, for short) the secret is whether the system evolved from a given initial state to a given final state or not. Two algorithms for IFO verification are discussed in the literature. One algorithm arises from a trellis-based state estimator, which builds a semigroup of binary relations generated by the events of the automaton, and the other is based on the reduction to language inclusion. The worst-case time complexity of both algorithms is bounded by a super-exponential function. We show that the super-exponential time complexity is tight for both algorithms; however, we leave open whether there is an algorithm with a lower time complexity. Finally, we use extensive benchmarks based on real data to experimentally compare the existing algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. When simulation meets antichains, in: Esparza, J., Majumdar, R. (Eds.), International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010, Springer. pp. 158–174. doi:10.1007/978-3-642-12002-2_14.
  2. Concurrent secrets. Discrete Event Dynamic Systems 17, 425–446.
  3. Comparing the notions of opacity for discrete-event systems. Discrete Event Dynamic Systems 31, 553–582. doi:10.1007/S10626-021-00344-2.
  4. Speed me up if you can: Conditional lower bounds on opacity verification, in: Leroux, J., Lombardy, S., Peleg, D. (Eds.), International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, Schloss Dagstuhl - Leibniz-Zentrum für Informatik. pp. 16:1–16:15. doi:10.4230/LIPICS.MFCS.2023.16.
  5. Checking NFA equivalence with bisimulations up to congruence, in: Giacobazzi, R., Cousot, R. (Eds.), Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, ACM. pp. 457–468. doi:10.1145/2429069.2429124.
  6. Opacity generalised to transition systems. International Journal of Information Security 7, 421–435.
  7. Modelling opacity using Petri nets. Electronic Notes in Theoretical Computer Science 121, 101–115. doi:10.1016/J.ENTCS.2004.10.010.
  8. Languages of R𝑅{R}italic_R-trivial monoids. Journal of Computer and Systems Sciences 20, 32–49. doi:10.1016/0022-0000(80)90003-3.
  9. Introduction to Discrete Event Systems. Third ed., Springer Cham. doi:10.1007/978-3-030-72274-6.
  10. From non-preemptive to preemptive scheduling using synchronization synthesis. Formal Methods in System Design 50, 97–139. doi:10.1007/S10703-016-0256-5.
  11. Mata, a fast and simple finite automata library (technical report). CoRR abs/2310.10136. doi:10.48550/ARXIV.2310.10136.
  12. Efficient reduction of nondeterministic automata with application to language inclusion testing. Logical Methods in Computer Science 15. doi:10.23638/LMCS-15(1:12)2019.
  13. On transformations, transformation-semigroups and graphs, in: Theory of Graphs. Proceedings of the Colloquium on Graph Theory, pp. 65–75.
  14. Generating sets of the semigroup of all binary relations on a finite set. Dokl. Akad. Nauk SSSR 12, 765–768. (Russian).
  15. Opacity enforcing control synthesis, in: Workshop on Discrete Event Systems (WODES), pp. 28–35.
  16. On the computation of natural observers in discrete-event systems. Discrete Event Dynamic Systems 20, 63–102. doi:10.1007/S10626-008-0054-3.
  17. On observing nondeterminism and concurrency, in: de Bakker, J.W., van Leeuwen, J. (Eds.), International Colloquium on Automata, Languages and Programming, Springer. pp. 299–309. doi:10.1007/3-540-10003-2_79.
  18. Minimal generating sets for matrix monoids. doi:10.48550/arXiv.2012.10323, arXiv:2012.10323.
  19. On deterministic finite automata and syntactic monoid size. Theoretical Computer Science 327, 319–347. doi:10.1016/J.TCS.2004.04.010.
  20. Introduction to Automata Theory, Languages and Computation. Addison-Wesley.
  21. Fundamentals of Semigroup Theory. LMS monographs, Clarendon.
  22. On the complexity of k-sat. Journal of Computer and System Sciences 62, 367–375. doi:10.1006/JCSS.2000.1727.
  23. Overview of discrete event systems opacity: Models, validation, and quantification. Annual Reviews in Control 41, 135–146. doi:10.1016/j.arcontrol.2016.04.015.
  24. On a structural property in the state complexity of projected regular languages. Theoretical Computer Science 449, 93–105. doi:10.1016/J.TCS.2012.04.009.
  25. Two-generator semigroups of binary relations. Journal of Mathematical Psychology 17, 236–246. doi:10.1016/0022-2496(78)90018-4.
  26. A proof of Devadze’s theorem on generators of the semigroup of boolean matrices. Semigroup Forum 83, 281–288. doi:10.1007/s00233-011-9305-y.
  27. State complexity and the monoid of transformations of a finite set. Intational Journal of Foundations of Computer Science 16, 547–563. doi:10.1142/S0129054105003157.
  28. Complexity of universality and related problems for partially ordered NFAs. Information and Computation 255, 177–192. doi:10.1016/j.ic.2017.06.004.
  29. Partially ordered automata and piecewise testability. Logical Methods in Computer Science 17. doi:10.23638/LMCS-17(2:14)2021.
  30. Communication and concurrency. PHI Series in computer science, Prentice Hall.
  31. Notions of security and opacity in discrete event systems, in: Conference on Decision and Control (CDC), pp. 5056–5061.
  32. Verification of initial-state opacity in security applications of discrete event systems. Information Sciences 246, 115–132. doi:10.1016/j.ins.2013.05.033.
  33. On the composition of functions of several variables ranging over a finite set. Annales Universitatis Turkuensis, Series A I 41.
  34. Gnu parallel 20240122 (’frederik x’). URL: https://doi.org/10.5281/zenodo.10558745, doi:10.5281/zenodo.10558745. GNU Parallel is a general parallelizer to run multiple serial command line programs in parallel without changing them.
  35. On the complexity of projections of discrete-event systems, in: Workshop on Discrete Event Systems, WODES 1998, Cagliari, Italy. pp. 201–206.
  36. Hierarchical control of discrete-event systems. Discrete Event Dynamic Systems 6, 241–273. doi:10.1007/BF01797154.
  37. On the computation of observers in discrete-event systems. Discrete Event Dynamic Systems 14, 55–107. doi:10.1023/B:DISC.0000005010.55515.27.
  38. Comparative analysis of related notions of opacity in centralized and coordinated architectures. Discrete Event Dynamic Systems 23, 307–339. doi:10.1007/S10626-012-0145-Z.

Summary

We haven't generated a summary for this paper yet.