Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pioneering Deterministic Scheduling and Network Structure Optimization for Time-Critical Computing Tasks in Industrial IoT (2402.16870v1)

Published 24 Jan 2024 in cs.NI

Abstract: The Industrial Internet of Things (IIoT) has become a critical technology to accelerate the process of digital and intelligent transformation of industries. As the cooperative relationship between smart devices in IIoT becomes more complex, getting deterministic responses of IIoT periodic time-critical computing tasks becomes a crucial and nontrivial problem. However, few current works in cloud/edge/fog computing focus on this problem. This paper is a pioneer to explore the deterministic scheduling and network structural optimization problems for IIoT periodic time-critical computing tasks. We first formulate the two problems and derive theorems to help quickly identify computation and network resource sharing conflicts. Based on this, we propose a deterministic scheduling algorithm, \textit{IIoTBroker}, which realizes deterministic response for each IIoT task by optimizing the fine-grained computation and network resources allocations, and a network optimization algorithm, \textit{IIoTDeployer}, providing a cost-effective structural upgrade solution for existing IIoT networks. Our methods are illustrated to be cost-friendly, scalable, and deterministic response guaranteed with low computation cost from our simulation results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge computing in industrial internet of things: Architecture, advances and challenges,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020.
  2. P. Gupta, C. Krishna, R. Rajesh, A. Ananthakrishnan, A. Vishnuvardhan, S. S. Patel, C. Kapruan, S. Brahmbhatt, T. Kataray, D. Narayanan et al., “Industrial internet of things in intelligent manufacturing: a review, approaches, opportunities, open challenges, and future directions,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–23, 2022.
  3. F. Tao, J. Cheng, and Q. Qi, “Iihub: An industrial internet-of-things hub toward smart manufacturing based on cyber-physical system,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2271–2280, 2017.
  4. B. Pretorius and B. van Niekerk, “Industrial internet of things security for the transportation infrastructure,” Journal of Information Warfare, vol. 19, no. 3, pp. 50–67, 2020.
  5. W. Mao, Z. Zhao, Z. Chang, G. Min, and W. Gao, “Energy-efficient industrial internet of things: Overview and open issues,” IEEE transactions on industrial informatics, vol. 17, no. 11, pp. 7225–7237, 2021.
  6. M. Ghahramani, Y. Qiao, M. C. Zhou, A. O’Hagan, and J. Sweeney, “Ai-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 1026–1037, 2020.
  7. H.-N. Dai, H. Wang, G. Xu, J. Wan, and M. Imran, “Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies,” Enterprise Information Systems, vol. 14, no. 9-10, pp. 1279–1303, 2020.
  8. P. T. Zacharia and E. K. Xidias, “Agv routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic algorithm,” The International Journal of Advanced Manufacturing Technology, vol. 109, pp. 1801–1813, 2020.
  9. Y.-A. Lu, K. Tang, and C.-Y. Wang, “Collision-free and smooth joint motion planning for six-axis industrial robots by redundancy optimization,” Robotics and Computer-Integrated Manufacturing, vol. 68, p. 102091, 2021.
  10. S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, “Energy-optimal dynamic computation offloading for industrial iot in fog computing,” IEEE Transactions on Green Communications and Networking, vol. 4, no. 2, pp. 566–576, 2019.
  11. W. Chen, Z. Zhang, Z. Hong, C. Chen, J. Wu, S. Maharjan, Z. Zheng, and Y. Zhang, “Cooperative and distributed computation offloading for blockchain-empowered industrial internet of things,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8433–8446, 2019.
  12. Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop cooperative computation offloading for industrial iot–edge–cloud computing environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 12, pp. 2759–2774, 2019.
  13. Y. Ren, Y. Sun, and M. Peng, “Deep reinforcement learning based computation offloading in fog enabled industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4978–4987, 2020.
  14. G. S. Rahman, T. Dang, and M. Ahmed, “Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks,” Intelligent and Converged Networks, vol. 1, no. 3, pp. 243–257, 2020.
  15. C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. Rodrigues, “Sdn-assisted mobile edge computing for collaborative computation offloading in industrial internet of things,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 24 253–24 263, 2022.
  16. F. Naeem, M. Tariq, and H. V. Poor, “Sdn-enabled energy-efficient routing optimization framework for industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5660–5667, 2020.
  17. N. Finn, “Introduction to time-sensitive networking,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.
  18. J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.
  19. J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking standards,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 20–21, 2018.
  20. L. L. Bello and W. Steiner, “A perspective on ieee time-sensitive networking for industrial communication and automation systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
  21. S. S. Craciunas, R. S. Oliver, and T. Ag, “An overview of scheduling mechanisms for time-sensitive networks,” Proceedings of the Real-time summer school LÉcole dÉté Temps Réel (ETR), pp. 1551–3203, 2017.
  22. A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Routing and scheduling of time-triggered traffic in time-sensitive networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4525–4534, 2019.
  23. M. Ashjaei, L. L. Bello, M. Daneshtalab, G. Patti, S. Saponara, and S. Mubeen, “Time-sensitive networking in automotive embedded systems: State of the art and research opportunities,” Journal of systems architecture, vol. 117, p. 102137, 2021.
  24. K. Peng, H. Huang, B. Zhao, A. Jolfaei, X. Xu, and M. Bilal, “Intelligent computation offloading and resource allocation in iiot with end-edge-cloud computing using nsga-iii,” IEEE Transactions on Network Science and Engineering, 2022.
  25. W. Steiner, “An evaluation of smt-based schedule synthesis for time-triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems Symposium.   IEEE, 2010, pp. 375–384.
  26. Y. Zhou, S. Samii, P. Eles, and Z. Peng, “Time-triggered scheduling for time-sensitive networking with preemption,” in 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC).   IEEE, 2022, pp. 262–267.
  27. V. Gavrilut, B. Zarrin, P. Pop, and S. Samii, “Fault-tolerant topology and routing synthesis for ieee time-sensitive networking,” in Proceedings of the 25th International Conference on Real-Time Networks and Systems, 2017, pp. 267–276.
  28. V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (tsn) for mixed-criticality industrial applications,” in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS).   IEEE, 2018, pp. 1–4.
  29. N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling and routing in time-sensitive software-defined networks,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.
  30. M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling time-triggered traffic in time-sensitive networks,” in 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA), vol. 1.   IEEE, 2018, pp. 337–344.
  31. J. Prados-Garzon, T. Taleb, and M. Bagaa, “Learnet: Reinforcement learning based flow scheduling for asynchronous deterministic networks,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  32. Y. Lu, L. Yang, S. X. Yang, Q. Hua, A. K. Sangaiah, T. Guo, and K. Yu, “An intelligent deterministic scheduling method for ultralow latency communication in edge enabled industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1756–1767, 2022.

Summary

We haven't generated a summary for this paper yet.