Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (2402.16855v1)

Published 19 Jan 2024 in cs.CV

Abstract: Conventional compressed sensing (CS) algorithms typically apply a uniform sampling rate to different image blocks. A more strategic approach could be to allocate the number of measurements adaptively, based on each image block's complexity. In this paper, we propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework, which aims to adaptively determine the sampling rate for each image block in accordance with traditional measurement bounds theory. Moreover, since in real-world scenarios statistical information about the original image cannot be directly obtained, we suggest a multi-stage rate-adaptive sampling strategy. This strategy sequentially adjusts the sampling ratio allocation based on the information gathered from previous samplings. We formulate the multi-stage rate-adaptive sampling as a convex optimization problem and address it using a combination of Newton's method and binary search techniques. Additionally, we enhance our decoding process by incorporating skip connections between successive iterations to facilitate a richer transmission of feature information across iterations. Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods, with experimental evidence also underscoring the effectiveness of each module within our proposed framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
  2. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 59, no. 8, pp. 1207–1223, 2006.
  3. E. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
  4. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing mri,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–82, 2008.
  5. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21391
  6. J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1322–1332, 2018.
  7. W. Yin, X. Fan, Y. Shi, R. Xiong, and D. Zhao, “Compressive sensing based soft video broadcast using spatial and temporal sparsity,” Mobile Networks and Applications, vol. 21, pp. 1002–1012, 2016.
  8. C. Li, H. Jiang, P. Wilford, Y. Zhang, and M. Scheutzow, “A new compressive video sensing framework for mobile broadcast,” IEEE Transactions on Broadcasting, vol. 59, no. 1, pp. 197–205, 2013.
  9. Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang, “Toward Nearly-Zero-Error sketching via compressive sensing,” in 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).   USENIX Association, Apr. 2021, pp. 1027–1044. [Online]. Available: https://www.usenix.org/conference/nsdi21/presentation/huang
  10. S. Mun and J. E. Fowler, “Block compressed sensing of images using directional transforms,” in 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 3021–3024.
  11. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Computational Optimization and Applications, vol. 56, pp. 507–530, 2013.
  12. J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, and W. Gao, “Image compressive sensing recovery via collaborative sparsity,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 3, pp. 380–391, 2012.
  13. J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation for image restoration,” IEEE Transactions on Image Processing, vol. 23, no. 8, pp. 3336–3351, 2014.
  14. J. Zhang and B. Ghanem, “Ista-net: Interpretable optimization-inspired deep network for image compressive sensing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  15. Z. Zhang, Y. Liu, J. Liu, F. Wen, and C. Zhu, “Amp-net: Denoising-based deep unfolding for compressive image sensing,” IEEE Transactions on Image Processing, vol. 30, pp. 1487–1500, 2021.
  16. J. Zhang, C. Zhao, and W. Gao, “Optimization-inspired compact deep compressive sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 765–774, 2020.
  17. Y. Yu, B. Wang, and L. Zhang, “Saliency-based compressive sampling for image signals,” IEEE Signal Processing Letters, vol. 17, no. 11, pp. 973–976, 2010.
  18. S. Zhou, Y. He, Y. Liu, C. Li, and J. Zhang, “Multi-channel deep networks for block-based image compressive sensing,” IEEE Transactions on Multimedia, vol. 23, pp. 2627–2640, 2021.
  19. B. Chen and J. Zhang, “Content-aware scalable deep compressed sensing,” IEEE Transactions on Image Processing, vol. 31, pp. 5412–5426, 2022.
  20. W. Shi, F. Jiang, S. Liu, and D. Zhao, “Scalable convolutional neural network for image compressed sensing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  21. D. You, J. Zhang, J. Xie, B. Chen, and S. Ma, “Coast: Controllable arbitrary-sampling network for compressive sensing,” IEEE Transactions on Image Processing, vol. 30, pp. 6066–6080, 2021.
  22. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001. [Online]. Available: https://doi.org/10.1137/S003614450037906X
  23. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.
  24. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Unknown Journal, 2004, communications in Pure and Applied Math., 57, no 11, 1413-1457 (2004).
  25. J. Mu, R. Xiong, X. Zhang, and S. Ma, “Band-wise adaptive sparsity regularization for quantized compressed sensing exploiting nonlocal similarity,” in 2017 Data Compression Conference (DCC), 2017, pp. 452–452.
  26. K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed measurements,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  27. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009. [Online]. Available: https://doi.org/10.1137/080716542
  28. M. Shen, H. Gan, C. Ning, Y. Hua, and T. Zhang, “Transcs: A transformer-based hybrid architecture for image compressed sensing,” IEEE Transactions on Image Processing, vol. 31, pp. 6991–7005, 2022.
  29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  30. M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel, “Low-complexity single-image super-resolution based on nonnegative neighbor embedding,” in Proceedings of the British Machine Vision Conference.   BMVA Press, 2012, pp. 135.1–135.10.
  31. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91, 2008.
  32. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  33. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  34. P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011.
  35. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, 2001, pp. 416–423 vol.2.
  36. M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity single-image super-resolution based on nonnegative neighbor embedding,” 2012.
  37. R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7.   Springer, 2012, pp. 711–730.
  38. J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-exemplars,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 5197–5206.
  39. R. Franzen, “Kodak lossless true color image suite,” source: http://r0k. us/graphics/kodak, vol. 4, no. 2, p. 9, 1999.
  40. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2.   Ieee, 2003, pp. 1398–1402.
  41. Z. Zheng, W. Dai, D. Xue, C. Li, J. Zou, and H. Xiong, “Hybrid ista: Unfolding ista with convergence guarantees using free-form deep neural networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3226–3244, 2023.

Summary

We haven't generated a summary for this paper yet.