Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Box Facets and Cut Facets of Lifted Multicut Polytopes (2402.16814v3)

Published 26 Feb 2024 in cs.DM and cs.LG

Abstract: The lifted multicut problem is a combinatorial optimization problem whose feasible solutions relate one-to-one to the decompositions of a graph $G = (V, E)$. Given an augmentation $\widehat{G} = (V, E \cup F)$ of $G$ and given costs $c \in \mathbb{R}{E \cup F}$, the objective is to minimize the sum of those $c_{uw}$ with $uw \in E \cup F$ for which $u$ and $w$ are in distinct components. For $F = \emptyset$, the problem specializes to the multicut problem, and for $E = \tbinom{V}{2}$ to the clique partitioning problem. We study a binary linear program formulation of the lifted multicut problem. More specifically, we contribute to the analysis of the associated lifted multicut polytopes: Firstly, we establish a necessary, sufficient and efficiently decidable condition for a lower box inequality to define a facet. Secondly, we show that deciding whether a cut inequality of the binary linear program defines a facet is NP-hard.

Summary

We haven't generated a summary for this paper yet.