Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic-preserving and energy stable dynamical low-rank approximation for thermal radiative transfer equations (2402.16746v1)

Published 26 Feb 2024 in math.NA and cs.NA

Abstract: The thermal radiative transfer equations model temperature evolution through a background medium as a result of radiation. When a large number of particles are absorbed in a short time scale, the dynamics tend to a non-linear diffusion-type equation called the Rosseland approximation. The main challenges for constructing numerical schemes that exhibit the correct limiting behavior are posed by the solution's high-dimensional phase space and multi-scale effects. In this work, we propose an asymptotic-preserving and rank-adaptive dynamical low-rank approximation scheme based on the macro-micro decomposition of the particle density and a modified augmented basis-update & Galerkin integrator. We show that this scheme, for linear particle emission by the material, dissipates energy over time under a step size restriction that captures the hyperbolic and parabolic CFL conditions. We demonstrate the efficacy of the proposed method in a series of numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. John R. Howell, M.Pinar Menguc and Robert Siegel “Thermal Radiation Heat Transfer (5th ed.)” CRC Press, 2010 DOI: https://doi.org/10.1201/9781439894552
  2. Svein Rosseland “Astrophysik auf atomtheoretischer Grundlage”, Struktur der Materie in Einzeldarstellungen ; 11 Berlin: Springer, 1931
  3. Shi Jin “Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review.” In Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT), Porto Ercole (Grosseto, Italy), 2010, pp. 177–216
  4. J. Hu, S. Jin and Q. Li “Chapter 5 - Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations” In Handbook of Numerical Methods for Hyperbolic Problems 18, Handbook of Numerical Analysis Elsevier, 2017, pp. 103–129 DOI: https://doi.org/10.1016/bs.hna.2016.09.001
  5. Axel Klar “An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit” In SIAM J. Numer. Anal. 36.5, 1999, pp. 1507–1527
  6. “A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit” In SIAM J. Sci. Comput. 31.1, 2008, pp. 334–368 DOI: 10.1137/07069479X
  7. “Dynamical Low-Rank Approximation” In SIAM Journal on Matrix Analysis and Applications 29.2, 2007, pp. 434–454 DOI: 10.1137/050639703
  8. Christian Lubich and Ivan V. Oseledets “A projector-splitting integrator for dynamical low-rank approximation” In Bit Numer Math 54, 2014, pp. 171–188 DOI: 10.1007/s10543-013-0454-0
  9. “An unconventional robust integrator for dynamical low-rank approximation” In Bit Numer Math 62, 2022, pp. 23–44 DOI: 10.1007/s10543-021-00873-0
  10. Gianluca Ceruti, Jonas Kusch and Christian Lubich “A rank-adaptive robust integrator for dynamical low-rank approximation” In Bit Numer Math 62, 2022, pp. 1149–1174 DOI: 10.1007/s10543-021-00907-7
  11. Gianluca Ceruti, Jonas Kusch and Christian Lubich “A parallel rank-adaptive integrator for dynamical low-rank approximation”, 2023 arXiv:2304.05660 [math.NA]
  12. “A robust second-order low-rank BUG integrator based on the midpoint rule” In arXiv preprint arXiv:2402.08607, 2024
  13. “A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy” In ESAIM: M2AN 57.2, 2023, pp. 865–891 DOI: 10.1051/m2an/2022090
  14. Lukas Einkemmer, Jingwei Hu and Yubo Wang “An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation” In Journal of Computational Physics 439, 2021, pp. 110353 DOI: https://doi.org/10.1016/j.jcp.2021.110353
  15. “A low-rank power iteration scheme for neutron transport criticality problems” In Journal of Computational Physics 470 Elsevier BV, 2022, pp. 111587 DOI: 10.1016/j.jcp.2022.111587
  16. Gianluca Ceruti, Martin Frank and Jonas Kusch “Dynamical low-rank approximation for Marshak waves”, 2022 DOI: 10.5445/IR/1000154134
  17. “Energy stable and conservative dynamical low-rank approximation for the Su-Olson problem”, 2023 arXiv:2307.07538 [math.NA]
  18. Lukas Einkemmer, Jingwei Hu and Yubo Wang “An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation” In J. Comput. Phys. 439, 2021, pp. Paper No. 110353\bibrangessep21 DOI: 10.1016/j.jcp.2021.110353
  19. Lukas Einkemmer, Jingwei Hu and Jonas Kusch “Asymptotic-Preserving and Energy Stable Dynamical Low-Rank Approximation” In SIAM Journal on Numerical Analysis 62.1, 2024, pp. 73–92 DOI: 10.1137/23M1547603
  20. “Numerical passage from radiative heat transfer to nonlinear diffusion models” In Math. Models Methods Appl. Sci. 11.5, 2001, pp. 749–767 DOI: 10.1142/S0218202501001082
  21. Lukas Einkemmer, Alexander Ostermann and Carmela Scalone “A robust and conservative dynamical low-rank algorithm” In Journal of Computational Physics 484, 2023, pp. 112060 DOI: https://doi.org/10.1016/j.jcp.2023.112060
  22. Lukas Einkemmer, Jonas Kusch and Steffen Schotthöfer “Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems”, 2023 arXiv:2311.06399 [math.NA]
  23. Julian Koellermeier, Philipp Krah and Jonas Kusch “Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: A study using POD-Galerkin and dynamical low rank approximation”, 2023 arXiv:2302.01391 [math.NA]
  24. Kenneth M Case and Paul Frederick Zweifel “Linear transport theory” Addison-Wesley, 1967
  25. “An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings” In Journal of Computational Physics 334, 2017, pp. 182–206 DOI: https://doi.org/10.1016/j.jcp.2016.12.033
  26. Bingjing Su and Gordon L. Olson “An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium” In Annals of Nuclear Energy 24.13, 1997, pp. 1035–1055 DOI: https://doi.org/10.1016/S0306-4549(96)00100-4
  27. Chinmay Patwardhan, Jonas Kusch and Martin Frank “Numerical testcases for "Asymptotic-preserving and energy stable dynamical low-rank approximation for thermal radiative transfer equations"”, 2024 URL: https://github.com/chinsp/publication-Asymptotic-preserving-and-energy-stable-DLRA-for-thermal-radiative-transfer-equations.git
Citations (1)

Summary

We haven't generated a summary for this paper yet.