Asymptotic-preserving and energy stable dynamical low-rank approximation for thermal radiative transfer equations (2402.16746v1)
Abstract: The thermal radiative transfer equations model temperature evolution through a background medium as a result of radiation. When a large number of particles are absorbed in a short time scale, the dynamics tend to a non-linear diffusion-type equation called the Rosseland approximation. The main challenges for constructing numerical schemes that exhibit the correct limiting behavior are posed by the solution's high-dimensional phase space and multi-scale effects. In this work, we propose an asymptotic-preserving and rank-adaptive dynamical low-rank approximation scheme based on the macro-micro decomposition of the particle density and a modified augmented basis-update & Galerkin integrator. We show that this scheme, for linear particle emission by the material, dissipates energy over time under a step size restriction that captures the hyperbolic and parabolic CFL conditions. We demonstrate the efficacy of the proposed method in a series of numerical experiments.
- John R. Howell, M.Pinar Menguc and Robert Siegel “Thermal Radiation Heat Transfer (5th ed.)” CRC Press, 2010 DOI: https://doi.org/10.1201/9781439894552
- Svein Rosseland “Astrophysik auf atomtheoretischer Grundlage”, Struktur der Materie in Einzeldarstellungen ; 11 Berlin: Springer, 1931
- Shi Jin “Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review.” In Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT), Porto Ercole (Grosseto, Italy), 2010, pp. 177–216
- J. Hu, S. Jin and Q. Li “Chapter 5 - Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations” In Handbook of Numerical Methods for Hyperbolic Problems 18, Handbook of Numerical Analysis Elsevier, 2017, pp. 103–129 DOI: https://doi.org/10.1016/bs.hna.2016.09.001
- Axel Klar “An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit” In SIAM J. Numer. Anal. 36.5, 1999, pp. 1507–1527
- “A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit” In SIAM J. Sci. Comput. 31.1, 2008, pp. 334–368 DOI: 10.1137/07069479X
- “Dynamical Low-Rank Approximation” In SIAM Journal on Matrix Analysis and Applications 29.2, 2007, pp. 434–454 DOI: 10.1137/050639703
- Christian Lubich and Ivan V. Oseledets “A projector-splitting integrator for dynamical low-rank approximation” In Bit Numer Math 54, 2014, pp. 171–188 DOI: 10.1007/s10543-013-0454-0
- “An unconventional robust integrator for dynamical low-rank approximation” In Bit Numer Math 62, 2022, pp. 23–44 DOI: 10.1007/s10543-021-00873-0
- Gianluca Ceruti, Jonas Kusch and Christian Lubich “A rank-adaptive robust integrator for dynamical low-rank approximation” In Bit Numer Math 62, 2022, pp. 1149–1174 DOI: 10.1007/s10543-021-00907-7
- Gianluca Ceruti, Jonas Kusch and Christian Lubich “A parallel rank-adaptive integrator for dynamical low-rank approximation”, 2023 arXiv:2304.05660 [math.NA]
- “A robust second-order low-rank BUG integrator based on the midpoint rule” In arXiv preprint arXiv:2402.08607, 2024
- “A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy” In ESAIM: M2AN 57.2, 2023, pp. 865–891 DOI: 10.1051/m2an/2022090
- Lukas Einkemmer, Jingwei Hu and Yubo Wang “An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation” In Journal of Computational Physics 439, 2021, pp. 110353 DOI: https://doi.org/10.1016/j.jcp.2021.110353
- “A low-rank power iteration scheme for neutron transport criticality problems” In Journal of Computational Physics 470 Elsevier BV, 2022, pp. 111587 DOI: 10.1016/j.jcp.2022.111587
- Gianluca Ceruti, Martin Frank and Jonas Kusch “Dynamical low-rank approximation for Marshak waves”, 2022 DOI: 10.5445/IR/1000154134
- “Energy stable and conservative dynamical low-rank approximation for the Su-Olson problem”, 2023 arXiv:2307.07538 [math.NA]
- Lukas Einkemmer, Jingwei Hu and Yubo Wang “An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation” In J. Comput. Phys. 439, 2021, pp. Paper No. 110353\bibrangessep21 DOI: 10.1016/j.jcp.2021.110353
- Lukas Einkemmer, Jingwei Hu and Jonas Kusch “Asymptotic-Preserving and Energy Stable Dynamical Low-Rank Approximation” In SIAM Journal on Numerical Analysis 62.1, 2024, pp. 73–92 DOI: 10.1137/23M1547603
- “Numerical passage from radiative heat transfer to nonlinear diffusion models” In Math. Models Methods Appl. Sci. 11.5, 2001, pp. 749–767 DOI: 10.1142/S0218202501001082
- Lukas Einkemmer, Alexander Ostermann and Carmela Scalone “A robust and conservative dynamical low-rank algorithm” In Journal of Computational Physics 484, 2023, pp. 112060 DOI: https://doi.org/10.1016/j.jcp.2023.112060
- Lukas Einkemmer, Jonas Kusch and Steffen Schotthöfer “Conservation properties of the augmented basis update & Galerkin integrator for kinetic problems”, 2023 arXiv:2311.06399 [math.NA]
- Julian Koellermeier, Philipp Krah and Jonas Kusch “Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: A study using POD-Galerkin and dynamical low rank approximation”, 2023 arXiv:2302.01391 [math.NA]
- Kenneth M Case and Paul Frederick Zweifel “Linear transport theory” Addison-Wesley, 1967
- “An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings” In Journal of Computational Physics 334, 2017, pp. 182–206 DOI: https://doi.org/10.1016/j.jcp.2016.12.033
- Bingjing Su and Gordon L. Olson “An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium” In Annals of Nuclear Energy 24.13, 1997, pp. 1035–1055 DOI: https://doi.org/10.1016/S0306-4549(96)00100-4
- Chinmay Patwardhan, Jonas Kusch and Martin Frank “Numerical testcases for "Asymptotic-preserving and energy stable dynamical low-rank approximation for thermal radiative transfer equations"”, 2024 URL: https://github.com/chinsp/publication-Asymptotic-preserving-and-energy-stable-DLRA-for-thermal-radiative-transfer-equations.git