2000 character limit reached
Almost gauge-invariant states and the ground state of Yang-Mills theory (2402.16743v1)
Published 26 Feb 2024 in hep-lat
Abstract: We consider the problem of the explicit description of the gauge-invariant subspace of pure lattice gauge theories in the Hamiltonian formulation, where the gauge group is either a compact Lie group or a finite group. The latter case is particularly interesting for quantum simulation. A basis of states where configurations are grouped according to their holonomies is shown to have several advantages over other descriptions. Using this basis, we compute some properties of interest for some non- Abelian finite groups on small lattices, and in particular we examine the question of whether a certain ansatz introduced long ago is a good approximation for the ground state.
- J. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).
- P. Hasenfratz and F. Niedermayer, Unexpected results in asymptotically free quantum field theories, Nucl. Phys. B 596, 481 (2001), arXiv:hep-lat/0006021 .
- E. Zohar and M. Burrello, Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D 91, 054506 (2015).
- N. Manjunath and M. Barkeshli, Crystalline gauge fields and quantized discrete geometric response for Abelian topological phases with lattice symmetry, Phys. Rev. Res. 3 (2021).
- D. Harlow and H. Ooguri, Symmetries in Quantum Field Theory and Quantum Gravity, Commun. Math. Phys. 383, 1669–1804 (2021).
- O. Friedrich, A. Singh, and O. Doré, Toolkit for scalar fields in universes with finite-dimensional Hilbert space, Class. Quantum Gravity 39, 235012 (2022).
- A. Mariani, S. Pradhan, and E. Ercolessi, Hamiltonians and gauge-invariant Hilbert space for lattice Yang-Mills-like theories with finite gauge group, Phys. Rev. D 107, 114513 (2023).
- B. Durhuus, On the structure of gauge invariant classical observables in lattice gauge theories, Lett. Math. Phys. 4, 515 (1980).
- R. P. Feynman, The Qualitative Behavior of Yang-Mills Theory in (2+1)-Dimensions, Nucl. Phys. B 188, 479 (1981).
- J. Greensite, Calculation of the Yang-Mills Vacuum Wave Functional, Nucl. Phys. B 158, 469 (1979).
- J. Greensite, Large-scale vacuum structure and new calculational techniques in lattice SU(N) gauge theory, Nucl. Phys. B 166, 113–124 (1980).
- M. Halpern, Field Strength and Dual Variable Formulations of Gauge Theory, Phys. Rev. D 19, 517 (1979).
- A. W. Knapp, Lie Groups: Beyond an Introduction, Progress in Mathematics (Birkhäuser, Boston, 1996).
- A. Milsted and T. J. Osborne, Quantum Yang-Mills theory: An overview of a program, Phys. Rev. D 98 (2018).
- D. Tong, Gauge Theory (2018).
- P. Orland, Duality for Nonabelian Lattice Fields, Nucl. Phys. B 163, 275 (1980).
- J. C. Baez, Spin Networks in Gauge Theory, Adv. Math. 117, 253 (1996).
- L. R. Foulds, Graph Theory Applications (Springer New York, 1992).
- A. Mariani, Finite-group Yang-Mills lattice gauge theories in the Hamiltonian formalism (2020).
- N. Watson, Solution of the SU(2) Mandelstam constraints, Phys. Lett. B 323, 385 (1994).
- A. Sengupta, Gauge Invariant Functions of Connections, Proc. Am. Math. Soc. 121, 897 (1994).
- T. Lévy, Wilson loops in the light of spin networks, J. Geom. Phys 52, 382–397 (2004).
- C.-H. Sah, Automorphisms of finite groups, J. Algebra 10, 47–68 (1968).
- P. Brooksbank and M. Mizuhara, On groups with a class-preserving outer automorphism, Involve, a Journal of Mathematics 7, 171 (2013).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2–30 (2003).
- S. Pradhan, A. Maroncelli, and E. Ercolessi, Discrete Abelian lattice gauge theories on a ladder and their dualities with quantum clock models, Phys. Rev. B 109, 064410 (2024).
- H. Arisue, M. Kato, and T. Fujiwara, Variational Study of Vacuum Wave Function for Lattice Gauge Theory in 2+1 Dimension, Prog. Theor. Phys 70, 229 (1983).
- H. Arisue, Variational Investigation of the Mass Spectrum in 2+1 Dimensional SU(2) Lattice Gauge Theory , Prog. Theor. Phys 84, 951 (1990).
- E. Dagotto and A. Moreo, Hamiltonian variational study of SU(2) lattice gauge theory, Phys. Rev. D 29, 2350 (1984).
- A. Dabringhaus, M. L. Ristig, and J. W. Clark, Vacuum ground and excited states of the U(1) lattice gauge Hamiltonian, Phys. Rev. D 43, 1978 (1991).
- S.-H. Guo, Q.-Z. Chen, and L. Li, Analytic calculation of the vacuum wave function for (2+1)-dimensional SU(2) lattice gauge theory, Phys. Rev. D 49, 507 (1994).
- J. McIntosh and L. Hollenberg, Reaching the continuum limit in lattice gauge theory—without a computer, Physics Letters B 538, 207–212 (2002a).
- J. A. McIntosh and L. C. Hollenberg, Analytic calculation of the mass gap in U(1)𝑈1U(1)italic_U ( 1 ) 2+1 lattice gauge theory., Nucl. Phys. B Proc. Suppl. 106–107, 257–259 (2002b).
- J. Carlsson, Improvement and Analytic Techniques in Hamiltonian Lattice Gauge Theory, Ph.D. thesis, University of Melbourne (2003).
- J. Greensite, Computer measurement of the Yang-Mills vacuum wavefunctional in three dimensions, Physics Letters B 191, 431–436 (1987).
- J. Greensite and J. Iwasaki, Monte Carlo study of the Yang-Mills vacuum wavefunctional in D=4𝐷4D=4italic_D = 4 dimensions, Physics Letters B 223, 207–212 (1989).
- H. Arisue, Monte Carlo measurement of the vacuum wavefunction for non-abelian gauge theory in D=3𝐷3D=3italic_D = 3 dimensions, Physics Letters B 280, 85–90 (1992).
- S. K. Lam, A. Pitrou, and S. Seibert, Numba: A llvm-based python jit compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015) pp. 1–6.
- C. Rebbi, Phase structure of non-Abelian lattice gauge theories, Phys. Rev. D 21, 3350 (1980).
- G. Bhanot and M. Creutz, Phase diagram of Z(N)𝑍𝑁Z(N)italic_Z ( italic_N ) and U(1)𝑈1U(1)italic_U ( 1 ) gauge theories in three dimensions, Phys. Rev. D 21, 2892 (1980).
- G. Bhanot and C. Rebbi, Monte Carlo simulations of lattice models with finite subgroups of SU(3) as gauge groups, Phys. Rev. D 24, 3319 (1981).
- D. Petcher and D. H. Weingarten, Monte Carlo calculations and a model of the phase structure for gauge theories on discrete subgroups of SU(2), Phys. Rev. D 22, 2465 (1980).
- M. Creutz and M. Okawa, Generalized actions in Zpsubscript𝑍𝑝Z_{p}italic_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT lattice gauge theory, Nuclear Physics B 220, 149 (1983).
- D. Heys and D. Stump, Evidence of the phase transition of the compact U(1) lattice gauge theory from a variational calculation, Nucl. Phys. B 257, 19 (1985).
- E. Witten, An SU(2) Anomaly, Phys. Lett. B 117, 324 (1982).
- G. G. Batrouni, Plaquette formulation and the Bianchi identity for lattice gauge theories, Nucl. Phys. B 208, 467 (1982).
- N. Ligterink, N. Walet, and R. Bishop, Toward a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory, Ann. Phys. 284, 215–262 (2000).