Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations (2402.16669v1)
Abstract: We use the general framework of summation by parts operators to construct conservative, entropy-stable and well-balanced semidiscretizations of two different nonlinear systems of dispersive shallow water equations with varying bathymetry: (i) a variant of the coupled Benjamin-Bona-Mahony (BBM) equations and (ii) a recently proposed model by Sv\"ard and Kalisch (2023) with enhanced dispersive behavior. Both models share the property of being conservative in terms of a nonlinear invariant, often interpreted as entropy function. This property is preserved exactly in our novel semidiscretizations. To obtain fully-discrete entropy-stable schemes, we employ the relaxation method. We present improved numerical properties of our schemes in some test cases.
- “Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear problems” In Journal of Scientific Computing 85.2 Springer, 2020, pp. 1–29 DOI: 10.1007/s10915-020-01349-z
- Dimitrios Antonopoulos, Vassilios Dougalis and Dimitrios Mitsotakis “Numerical solution of Boussinesq systems of the Bona–Smith family” In Applied Numerical Mathematics 60, 2010, pp. 314–336 DOI: 10.1016/j.apnum.2009.03.002
- Marsha J. Berger and Randall J. LeVeque “Towards Adaptive Simulations of Dispersive Tsunami Propagation from an Asteroid Impact”, 2021 arXiv:2110.01420 [math.NA]
- “Julia: A Fresh Approach to Numerical Computing”, 2015 arXiv:1411.1607 [cs.MS]
- Jerry L. Bona and Min Chen “A Boussinesq system for two-way propagation of nonlinear dispersive waves” In Physica D: Nonlinear Phenomena 116, 1998, pp. 191–224 DOI: 10.1016/S0167-2789(97)00249-2
- Jerry L. Bona, Min Chen and Jean-Claude Saut “Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory” In Nonlinearity 17, 2004, pp. 925–952 DOI: 10.1088/0951-7715/17/3/010
- François Bouchut “Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources” Birkhäuser, 2004 DOI: 10.1007/b93802
- “On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems” In Journal of Scientific Computing 87.2 Springer, 2021, pp. 48 DOI: 10.1007/s10915-021-01429-8
- “Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces” In SIAM Journal on Scientific Computing 36.5 Society for IndustrialApplied Mathematics, 2014, pp. B835–B867 DOI: 10.1137/130932193
- Mark H. Carpenter and David Gottlieb “Spectral Methods on Arbitrary Grids” In Journal of Computational Physics 129, 1996, pp. 74–86 DOI: 10.1006/jcph.1996.0234
- Jesse Chan “On discretely entropy conservative and entropy stable discontinuous Galerkin methods” In Journal of Computational Physics 362 Elsevier, 2018, pp. 346–374 DOI: 10.1016/j.jcp.2018.02.033
- Min Chen “Exact Traveling-Wave Solutions to Bidirectional Wave Equations” In International Journal of Theoretical Physics 37, 1998, pp. 1547–1567 DOI: 10.1023/A:1026667903256
- “Review of entropy stable discontinuous Galerkin methods for systems of conservation laws on unstructured simplex meshes” In CSIAM Transactions on Applied Mathematics 1.1 Global Science Press, 2020, pp. 1–52 DOI: 10.4208/csiam-am.2020-0003
- Maarten W. Dingemans “Comparison of computations with Boussinesq-like models and laboratory measurements”, 1994 URL: http://resolver.tudelft.nl/uuid:c2091d53-f455-48af-a84b-ac86680455e9
- Maarten W. Dingemans “Water Wave Propagation Over Uneven Bottoms” World Scientific, 1997 DOI: 10.1142/1241
- C. Escalante and T. Morales Luna “A General Non-hydrostatic Hyperbolic Formulation for Boussinesq Dispersive Shallow Flows and Its Numerical Approximation” In Journal of Scientific Computing 83, 2020 DOI: 10.1007/s10915-020-01244-7
- “A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves” In Nonlinearity 30.7 IOP Publishing, 2017, pp. 2718 DOI: 10.1088/1361-6544/aa712d
- David C Del Rey Fernández, Jason E Hicken and David W Zingg “Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations” In Computers & Fluids 95 Elsevier, 2014, pp. 171–196 DOI: 10.1016/j.compfluid.2014.02.016
- “Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions” In Journal of Computational Physics 234, 2013, pp. 353–375 DOI: 10.1016/j.jcp.2012.09.026
- Gregor J. Gassner “A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods” In SIAM Journal on Scientific Computing 35, 2013, pp. A1233–A1253 DOI: 10.1137/120890144
- Gregor J. Gassner, Andrew R. Winters and David A. Kopriva “Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations” In Journal of Computational Physics 327, 2016, pp. 39–66 DOI: 10.1016/j.jcp.2016.09.013
- Gregor Josef Gassner “A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods” In SIAM Journal on Scientific Computing 35.3 Society for IndustrialApplied Mathematics, 2013, pp. A1233–A1253 DOI: 10.1137/120890144
- “Dispersion of tsunamis: does it really matter?” In Natural Hazards and Earth System Sciences 13, 2013, pp. 1507–1526 DOI: 10.5194/nhess-13-1507-2013
- “Hyperbolic relaxation technique for solving the dispersive Serre-Green-Naghdi equations with topography” In Journal of Computational Physics 450 Elsevier, 2022, pp. 110809 DOI: 10.1016/j.jcp.2021.110809
- Jason E Hicken “Entropy-stable, high-order summation-by-parts discretizations without interface penalties” In Journal of Scientific Computing 82.2 Springer, 2020, pp. 50 DOI: 10.1007/s10915-020-01154-8
- Jason E Hicken, David C Del Rey Fernández and David W Zingg “Multidimensional Summation-By-Parts Operators: General Theory and Application to Simplex Elements” In SIAM Journal on Scientific Computing 38.4 Society for IndustrialApplied Mathematics, 2016, pp. A1935–A1958 DOI: 10.1137/15M1038360
- H. T. Huynh “A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods” In 18th AIAA Computational Fluid Dynamics Conference, 2007 American Institute of AeronauticsAstronautics DOI: 10.2514/6.2007-4079
- “A regularized shallow-water waves system with slip-wall boundary conditions in a basin: theory and numerical analysis” In Nonlinearity 35.1, 2021, pp. 750–786 DOI: 10.1088/1361-6544/ac3c29
- Samer Israwi, Youssef Khalifeh and Dimitrios Mitsotakis “Equations for small amplitude shallow water waves over small bathymetric variations” In The Royal Society Publishing 479.2277, 2023 DOI: 10.1098/rspa.2023.0191
- Theodoros Katsaounis, Dimitrios Mitsotakis and Georges Sadaka “Boussinesq-Peregrine water wave models and their numerical approximation” In Journal of Computational Physics 417, 2020 DOI: 10.1016/j.jcp.2020.109579
- David I. Ketcheson “Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms” In SIAM Journal on Numerical Analysis 57.6, 2019, pp. 2850–2870 DOI: 10.1137/19M1263662
- Jihwan Kim “Finite Volume Methods for Tsunamis Generated by Submarine Landslides”, 2014 URL: http://hdl.handle.net/1773/25374
- “A Boussinesq type extension of the GeoClaw model – a study of wave breaking phenomena applying dispersive long wave models” In Coastal Engineering 122, 2017, pp. 75–86 DOI: 10.1016/j.coastaleng.2017.01.005
- “Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations” In Mathematical Aspects of Finite Elements in Partial Differential Equations New York: Academic Press, 1974, pp. 195–212
- Joshua Lampert “DispersiveShallowWater.jl: Structure-preserving numerical methods for dispersive shallow water models”, https://github.com/JoshuaLampert/DispersiveShallowWater.jl, 2023 DOI: 10.5281/zenodo.10034636
- “Reproducibility repository for "Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations"”, https://github.com/JoshuaLampert/2024_dispersive_shallow_water, 2024 DOI: 10.5281/zenodo.10709026
- Randall J. LeVeque “Finite Volume Methods for Hyperbolic Problems” Cambridge University Press, 2002 DOI: 10.1017/CBO9780511791253
- Mária Lukáčová-Medvidová, Sebastian Noelle and Markus Kraft “Well-balanced finite volume evolution Galerkin methods for the shallow water equations” In Journal of Computational Physics 221, 2006, pp. 122–147 DOI: 10.1016/j.jcp.2006.06.015
- Per A. Madsen and Ole R. Sørensen “A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry” In Coastal Engineering 18, 1992, pp. 183–204 DOI: 10.1016/0378-3839(92)90019-Q
- Ken Mattsson “Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives” In Journal of Computational Physics 274, 2014, pp. 432–454 DOI: 10.1016/j.jcp.2014.06.027
- Ken Mattsson “Diagonal-norm upwind SBP operators” In Journal of Computational Physics 335, 2017, pp. 283–310 DOI: 10.1016/j.jcp.2017.01.042
- “Summation by parts operators for finite difference approximations of second derivatives” In Journal of Computational Physics 199.2 Elsevier, 2004, pp. 503–540 DOI: 10.1016/j.jcp.2004.03.001
- “A conservative fully-discrete numerical method for the regularised shallow water wave equations” In SIAM Journal on Scientific Computing 43.2, 2021, pp. B508–B537 DOI: 10.1137/20m1364606
- Dimitrios Mitsotakis “Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves” In Mathematics and Computers in Simulation 80, 2009, pp. 860–873 DOI: 10.1016/j.matcom.2009.08.029
- “Finite volume approximations and strict stability for hyperbolic problems” In Applied Numerical Mathematics 38.3 Elsevier, 2001, pp. 237–255 DOI: 10.1016/S0168-9274(01)00027-7
- “Finite volume methods, unstructured meshes and strict stability for hyperbolic problems” In Applied Numerical Mathematics 45.4 Elsevier, 2003, pp. 453–473 DOI: 10.1016/S0168-9274(02)00239-8
- Okey Nwogu “Alternative Form of Boussinesq Equations for Nearshore Wave Propagation” In Journal of Waterway, Port, Coastal, and Ocean Engineering 119, 1993, pp. 618–638 DOI: 10.1061/(ASCE)0733-950X(1993)119:6(618)
- D. Howell Peregrine “Long waves on a beach” In Journal of Fluid Mechanics 27, 1967, pp. 815–827 DOI: 10.1017/S0022112067002605
- “DifferentialEquations.jl – A performant and feature-rich ecosystem for solving differential equations in Julia” In Journal of Open Research Software 5.1 Ubiquity Press, 2017 DOI: 10.5334/jors.151
- H. Ranocha, D. Mitsotakis and D.I. Ketcheson “A broad class of conservative numerical methods for dispersive wave equations” In Communications in Computational Physics 29.4, 2021, pp. 979–1029 DOI: 10.4208/cicp.oa-2020-0119
- Hendrik Ranocha “Mimetic Properties of Difference Operators: Product and Chain Rules as for Functions of Bounded Variation and Entropy Stability of Second Derivatives” In BIT Numerical Mathematics 59.2 Springer, 2019, pp. 547–563 DOI: 10.1007/s10543-018-0736-7
- Hendrik Ranocha “On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators” In IMA Journal of Numerical Analysis 41, 2021, pp. 654–682 DOI: 10.1093/imanum/drz070
- Hendrik Ranocha “Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods” In GEM – International Journal on Geomathematics 8.1, 2017, pp. 85–133 DOI: 10.1007/s13137-016-0089-9
- Hendrik Ranocha “SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties” In Journal of Open Source Software 6.64 The Open Journal, 2021, pp. 3454 DOI: 10.21105/joss.03454
- Hendrik Ranocha and David I. Ketcheson “Relaxation Runge–Kutta Methods for Hamiltonian Problems” In Journal of Scientific Computing 84, 2020 DOI: 10.1007/s10915-020-01277-y
- Hendrik Ranocha, Lajos Lóczi and David I. Ketcheson “General relaxation methods for initial-value problems with application to multistep schemes” In Numerische Mathematik 146, 2020, pp. 875–906 DOI: 10.1007/s00211-020-01158-4
- Hendrik Ranocha, Manuel Quezada Luna and David I. Ketcheson “On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations” In Partial Differential Equations and Applications 76.2, 2021 DOI: 10.1007/s42985-021-00126-3
- Hendrik Ranocha, Philipp Öffner and Thomas Sonar “Summation-by-parts operators for correction procedure via reconstruction” In Journal of Computational Physics 311 Elsevier, 2016, pp. 299–328 DOI: 10.1016/j.jcp.2016.02.009
- “Relaxation Runge–Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations” In SIAM Journal on Scientific Computing 42, 2020, pp. A612–A638 DOI: 10.1137/19M1263480
- “Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing” In Proceedings of the JuliaCon Conferences 1.1, 2022 DOI: 10.21105/jcon.00077
- Hemming A. Schäffer and Per A. Madsen “Further enhancements of Boussinesq-type equations” In Coastal Engineering 26, 1995, pp. 1–14 DOI: 10.1016/0378-3839(95)00017-2
- “Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs in Julia”, https://github.com/trixi-framework/Trixi.jl, 2021 DOI: 10.5281/zenodo.3996439
- “A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics” In Journal of Computational Physics 442 Elsevier, 2021 DOI: 10.1016/j.jcp.2021.110467
- Bo Strand “Summation by Parts for Finite Difference Approximations for d/dx𝑑𝑑𝑥d/dxitalic_d / italic_d italic_x” In Journal of Computational Physics 110.1 Elsevier, 1994, pp. 47–67 DOI: 10.1006/jcph.1994.1005
- “A novel energy-bounded Boussinesq model and a well balanced and stable numerical discretisation”, 2023 arXiv:2302.09924 [math.NA]
- “Review of summation-by-parts schemes for initial-boundary-value problems” In Journal of Computational Physics 268 Elsevier, 2014, pp. 17–38 DOI: 10.1016/j.jcp.2014.02.031
- Ch. Tsitouras “Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption” In Computers and Mathematics with Applications 62, 2011, pp. 770–775 DOI: 10.1016/j.camwa.2011.06.002
- Gerald Beresford Whitham “Linear and nonlinear waves” John Wiley & Sons, 1974 DOI: 10.1002/9781118032954
- “An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry” In Journal of Computational Physics 340, 2017, pp. 240–242 DOI: 10.1016/j.jcp.2017.03.036