Single Neuromorphic Memristor closely Emulates Multiple Synaptic Mechanisms for Energy Efficient Neural Networks (2402.16628v1)
Abstract: Biological neural networks do not only include long-term memory and weight multiplication capabilities, as commonly assumed in artificial neural networks, but also more complex functions such as short-term memory, short-term plasticity, and meta-plasticity - all collocated within each synapse. Here, we demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions. These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation. They can act as multi-functional hardware synapses in a class of bio-inspired deep neural networks (DNN) that make use of both long- and short-term synaptic dynamics and are capable of meta-learning or "learning-to-learn". The resulting bio-inspired DNN is then trained to play the video game Atari Pong, a complex reinforcement learning task in a dynamic environment. Our analysis shows that the energy consumption of the DNN with multi-functional memristive synapses decreases by about two orders of magnitude as compared to a pure GPU implementation. Based on this finding, we infer that memristive devices with a better emulation of the synaptic functionalities do not only broaden the applicability of neuromorphic computing, but could also improve the performance and energy costs of certain artificial intelligence applications.
- Spike-timing-dependent plasticity: a comprehensive overview. Frontiers in synaptic neuroscience 4, 2 (2012). [2] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces GluR1-dependent associative short-term potentiation: A potential mechanism for short-term memory. Journal of Cognitive Neuroscience 22, 2530–2540 (2010). [3] Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces GluR1-dependent associative short-term potentiation: A potential mechanism for short-term memory. Journal of Cognitive Neuroscience 22, 2530–2540 (2010). [3] Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- A single brief burst induces GluR1-dependent associative short-term potentiation: A potential mechanism for short-term memory. Journal of Cognitive Neuroscience 22, 2530–2540 (2010). [3] Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Short-Term Synaptic Plasticity. Annual Review of Physiology 64, 355–405 (2002). URL https://doi.org/10.1146/annurev.physiol.64.092501.114547. [4] Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature neuroscience 9, 534–542 (2006). [5] Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Erickson, M. A., Maramara, L. A. & Lisman, J. A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- A single brief burst induces glur1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of cognitive neuroscience 22, 2530–2540 (2010). [6] Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Metaplasticity: the plasticity of synaptic plasticity. Trends in neurosciences 19, 126–130 (1996). [7] Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Barrett, A. B., Billings, G. O., Morris, R. G. & Van Rossum, M. C. State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology 5 (2009). [8] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Model-agnostic meta-learning for fast adaptation of deep networks, 1126–1135 (2017). [9] Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Differentiable plasticity: training plastic neural networks with backpropagation, 3559–3568 (2018). [10] Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. arXiv preprint arXiv:2002.10585 (2020). [11] Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Tyulmankov, D., Yang, G. R. & Abbott, L. F. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–557 (2022). URL https://doi.org/10.1016/j.neuron.2021.11.009. [12] Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Najarro, E. & Risi, S. Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Meta-learning through hebbian plasticity in random networks. Advances in Neural Information Processing Systems 2020-Decem (2020). [13] Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5149–5169 (2022). [14] Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- The role of short-term synaptic dynamics in motor control. Current opinion in neurobiology 10, 683–690 (2000). [15] Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). [16] Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Shimizu, G., Yoshida, K., Kasai, H. & Toyoizumi, T. Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Computational roles of intrinsic synaptic dynamics. Current Opinion in Neurobiology 70, 34–42 (2021). [17] Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Zador, A. et al. Catalyzing next-generation artificial intelligence through neuroai. Nature communications 14, 1597 (2023). [18] Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Canziani, A., Paszke, A. & Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- An Analysis of Deep Neural Network Models for Practical Applications 1–7 (2016). URL http://arxiv.org/abs/1605.07678. [19] Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Patterson, D. et al. Carbon Emissions and Large Neural Network Training 1–22 (2021). URL http://arxiv.org/abs/2104.10350. [20] Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Moraitis, T., Sebastian, A. & Eleftheriou, E. Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Short-term synaptic plasticity optimally models continuous environments (2020). URL http://arxiv.org/abs/2009.06808. [21] Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Rodriguez, H. G., Guo, Q. & Moraitis, T. Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Chaudhuri, K. et al. (eds) Short-term plasticity neurons learning to learn and forget. (eds Chaudhuri, K. et al.) Proceedings of the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research, 18704–18722 (2022). URL https://proceedings.mlr.press/v162/rodriguez22b.html. [22] Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Xu, X. et al. Scaling for edge inference of deep neural networks. Nature Electronics 1, 216–222 (2018). [23] Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proceedings of the IEEE 106, 260–285 (2018). [24] Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Memory devices and applications for in-memory computing. Nature Nanotechnology 15, 529–544 (2020). URL http://dx.doi.org/10.1038/s41565-020-0655-z. [25] Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010). URL https://pubs.acs.org/sharingguidelines. [26] Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Waser, R. Nanoelectronics and Information Technology (John Wiley and Sons, 2012). [27] Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Emboras, A. et al. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 117 (2020). [28] Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Portner, K. et al. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 15, 14776–14785 (2021). [29] Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Dynamical memristors for higher-complexity neuromorphic computing. Nature Reviews Materials 7, 575–591 (2022). [30] Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Demirag, Y. et al. PCM-trace: Scalable synaptic eligibility traces with resistivity drift of phase-change materials. Proceedings - IEEE International Symposium on Circuits and Systems 2021-May (2021). [31] Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R., Huang, H. M. & Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Memristive Synapses and Neurons for Bioinspired Computing. Advanced Electronic Materials 5, 1–32 (2019). [32] Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Choi, S., Yang, J. & Wang, G. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing. Advanced Materials 32, 1–26 (2020). [33] Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Yang, R. et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Advanced Functional Materials 28, 1–10 (2018). [34] Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Xiong, J. et al. Bienenstock, Cooper, and Munro Learning Rules Realized in Second-Order Memristors with Tunable Forgetting Rate. Advanced Functional Materials 29, 1–8 (2019). [35] Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Pfeiffer, M. & Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontiers in Neuroscience 12 (2018). [36] Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature Nanotechnology (2022). URL https://doi.org/10.1038/s41565-022-01095-3. [37] Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Li, Y. et al. Filament-free bulk resistive memory enables deterministic analogue switching. Advanced Materials 32, 2003984 (2020). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003984. [38] Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cruz-Albrecht, J. M., Yung, M. W. & Srinivasa, N. Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Energy-efficient neuron, synapse and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems 6, 246–256 (2012). [39] Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Joubert, A., Belhadj, B., Temam, O. & Héliot, R. Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Hardware spiking neurons design: Analog or digital? Proceedings of the International Joint Conference on Neural Networks 6–10 (2012). [40] Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Gopalakrishnan, R. & Basu, A. Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Triplet Spike Time Dependent Plasticity: A floating-gate Implementation 1–13 (2015). URL http://arxiv.org/abs/1512.00961. [41] Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials 22, 4819–4822 (2010). [42] Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nature Communications 7, 1–7 (2016). [43] Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Cooper, D. et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials 29, 1–8 (2017). [44] Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Menzel, S. & Waser, R. in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- in Mechanism of memristive switching in OxRAM 137–170 (2019). [45] Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Siegel, S. et al. Trade-Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices. Advanced Electronic Materials 7 (2021). [46] Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications 5 (2014). [47] Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Neftci, E. O. & Averbeck, B. B. Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Reinforcement learning in artificial and biological systems. Nature Machine Intelligence 1, 133–143 (2019). URL https://doi.org/10.1038/s42256-019-0025-4. [48] Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Li, Y. et al. Nanoscale Chemical and Valence Evolution at the Metal/Oxide Interface: A Case Study of Ti/SrTiO3. Advanced Materials Interfaces 3, 1–8 (2016). [49] La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. La Mattina, F., Bednorz, J. G., Alvarado, S. F., Shengelaya, A. & Keller, H. Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Detection of charge transfer processes in Cr-doped SrTi O3 single crystals. Applied Physics Letters 93 (2008). [50] Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Liang, E. et al. Dy, J. & Krause, A. (eds) RLlib: Abstractions for distributed reinforcement learning. (eds Dy, J. & Krause, A.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, 3053–3062 (2018). URL https://proceedings.mlr.press/v80/liang18b.html. [51] Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Mnih, V. et al. Balcan, M. F. & Weinberger, K. Q. (eds) Asynchronous methods for deep reinforcement learning. (eds Balcan, M. F. & Weinberger, K. Q.) Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings of Machine Learning Research, 1928–1937 (2016). URL https://proceedings.mlr.press/v48/mniha16.html. [52] Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Belgaid, M. c., Rouvoy, R. & Seinturier, L. Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Pyjoules: Python library that measures python code snippets (2019). URL https://github.com/powerapi-ng/pyJoules. [53] Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Dally, B. The path to exascale computing (2015). URL https://images.nvidia.com/events/sc15/pdfs/SC5102-path-exascale-computing.pdf. [54] Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805. Bhalachandra, S., Austin, B., Williams, S. & Wright, N. J. Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Understanding the impact of input entropy on fpu, cpu, and gpu power (2022). 2212.08805.
- Christoph Weilenmann (1 paper)
- Alexandros Ziogas (1 paper)
- Till Zellweger (1 paper)
- Kevin Portner (2 papers)
- Marko Mladenović (7 papers)
- Manasa Kaniselvan (5 papers)
- Timoleon Moraitis (12 papers)
- Mathieu Luisier (62 papers)
- Alexandros Emboras (5 papers)