Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Deep Watermark Security: An Adversarial Transferability Perspective (2402.16397v1)

Published 26 Feb 2024 in cs.CR and cs.AI

Abstract: The rise of generative neural networks has triggered an increased demand for intellectual property (IP) protection in generated content. Deep watermarking techniques, recognized for their flexibility in IP protection, have garnered significant attention. However, the surge in adversarial transferable attacks poses unprecedented challenges to the security of deep watermarking techniques-an area currently lacking systematic investigation. This study fills this gap by introducing two effective transferable attackers to assess the vulnerability of deep watermarks against erasure and tampering risks. Specifically, we initially define the concept of local sample density, utilizing it to deduce theorems on the consistency of model outputs. Upon discovering that perturbing samples towards high sample density regions (HSDR) of the target class enhances targeted adversarial transferability, we propose the Easy Sample Selection (ESS) mechanism and the Easy Sample Matching Attack (ESMA) method. Additionally, we propose the Bottleneck Enhanced Mixup (BEM) that integrates information bottleneck theory to reduce the generator's dependence on irrelevant noise. Experiments show a significant enhancement in the success rate of targeted transfer attacks for both ESMA and BEM-ESMA methods. We further conduct a comprehensive evaluation using ESMA and BEM-ESMA as measurements, considering model architecture and watermark encoding length, and achieve some impressive findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 10 674–10 685. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01042
  2. J. Chen, Y. Wu, S. Luo, E. Xie, S. Paul, P. Luo, H. Zhao, and Z. Li, “Pixart-δ𝛿\deltaitalic_δ: Fast and controllable image generation with latent consistency models,” CoRR, vol. abs/2401.05252, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05252
  3. J. Zhang, D. Chen, J. Liao, W. Zhang, H. Feng, G. Hua, and N. Yu, “Deep model intellectual property protection via deep watermarking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 8, pp. 4005–4020, 2022. [Online]. Available: https://doi.org/10.1109/TPAMI.2021.3064850
  4. P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon, “The stable signature: Rooting watermarks in latent diffusion models,” CoRR, vol. abs/2303.15435, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.15435
  5. J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data with deep networks,” in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XV, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11219.   Springer, 2018, pp. 682–697. [Online]. Available: https://doi.org/10.1007/978-3-030-01267-0_40
  6. N. Inkawhich, W. Wen, H. H. Li, and Y. Chen, “Feature space perturbations yield more transferable adversarial examples,” in CVPR, 2019.
  7. Y. Zhu, J. Sun, and Z. Li, “Rethinking adversarial transferability from a data distribution perspective,” in ICLR, 2022. [Online]. Available: https://openreview.net/forum?id=gVRhIEajG1k
  8. M. Li, C. Deng, T. Li, J. Yan, X. Gao, and H. Huang, “Towards transferable targeted attack,” in CVPR, 2020. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2020/html/Li_Towards_Transferable_Targeted_Attack_CVPR_2020_paper.html
  9. Z. Zhao, Z. Liu, and M. A. Larson, “On success and simplicity: A second look at transferable targeted attacks,” in NeurIPS, 2021. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/30d454f09b771b9f65e3eaf6e00fa7bd-Abstract.html
  10. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in CVPR, 2018. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.html
  11. J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov accelerated gradient and scale invariance for adversarial attacks,” in ICLR, 2020. [Online]. Available: https://openreview.net/forum?id=SJlHwkBYDH
  12. B. Li, Y. Liu, and X. Wang, “Gradient harmonized single-stage detector,” in AAAI, 2019. [Online]. Available: https://doi.org/10.1609/aaai.v33i01.33018577
  13. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint physics/0004057, 2000.
  14. H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.   OpenReview.net, 2018. [Online]. Available: https://openreview.net/forum?id=r1Ddp1-Rb
  15. H. Fang, Y. Qiu, K. Chen, J. Zhang, W. Zhang, and E. Chang, “Flow-based robust watermarking with invertible noise layer for black-box distortions,” in Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, B. Williams, Y. Chen, and J. Neville, Eds.   AAAI Press, 2023, pp. 5054–5061. [Online]. Available: https://doi.org/10.1609/aaai.v37i4.25633
  16. J. Gao, B. Qi, Y. Li, Z. Guo, D. Li, Y. Xing, and D. Zhang, “Perturbation towards easy samples improves targeted adversarial transferability,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023.
  17. B. Qi, B. Zhou, W. Zhang, J. Liu, and L. Wu, “Improving robustness of intent detection under adversarial attacks: A geometric constraint perspective,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  18. N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box attacks against machine learning,” in ACM, 2017. [Online]. Available: https://doi.org/10.1145/3052973.3053009
  19. A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited queries and information,” in ICML, 2018. [Online]. Available: http://proceedings.mlr.press/v80/ilyas18a.html
  20. J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841, 2019. [Online]. Available: https://doi.org/10.1109/TEVC.2019.2890858
  21. Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples by translation-invariant attacks,” in CVPR, 2019. [Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/html/Dong_Evading_Defenses_to_Transferable_Adversarial_Examples_by_Translation-Invariant_Attacks_CVPR_2019_paper.html
  22. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in ICLR, 2015. [Online]. Available: http://arxiv.org/abs/1412.6572
  23. N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural networks,” in IEEE S&P, 2017. [Online]. Available: https://doi.org/10.1109/SP.2017.49
  24. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in ICLR, 2018. [Online]. Available: https://openreview.net/forum?id=rJzIBfZAb
  25. J. Zou, Z. Pan, J. Qiu, X. Liu, T. Rui, and W. Li, “Improving the transferability of adversarial examples with resized-diverse-inputs, diversity-ensemble and region fitting,” in ECCV, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-58542-6_34
  26. N. Inkawhich, K. J. Liang, L. Carin, and Y. Chen, “Transferable perturbations of deep feature distributions,” in ICLR, 2020. [Online]. Available: https://openreview.net/forum?id=rJxAo2VYwr
  27. N. Inkawhich, K. J. Liang, B. Wang, M. Inkawhich, L. Carin, and Y. Chen, “Perturbing across the feature hierarchy to improve standard and strict blackbox attack transferability,” in NeurIPS, 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/eefc7bfe8fd6e2c8c01aa6ca7b1aab1a-Abstract.html
  28. C. Zhang, P. Benz, A. Karjauv, J. Cho, K. Zhang, and I. S. Kweon, “Investigating top-k white-box and transferable black-box attack,” in CVPR, 2022. [Online]. Available: https://doi.org/10.1109/CVPR52688.2022.01466
  29. Z. Qin, Y. Fan, Y. Liu, L. Shen, Y. Zhang, J. Wang, and B. Wu, “Boosting the transferability of adversarial attacks with reverse adversarial perturbation,” in NeurIPS, 2022.
  30. M. Naseer, S. H. Khan, M. Hayat, F. S. Khan, and F. Porikli, “On generating transferable targeted perturbations,” in ICCV, 2021. [Online]. Available: https://doi.org/10.1109/ICCV48922.2021.00761
  31. O. Poursaeed, I. Katsman, B. Gao, and S. J. Belongie, “Generative adversarial perturbations,” in CVPR, 2018. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Poursaeed_Generative_Adversarial_Perturbations_CVPR_2018_paper.html
  32. K. R. Mopuri, U. Ojha, U. Garg, and R. V. Babu, “NAG: network for adversary generation,” in CVPR, 2018. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Mopuri_NAG_Network_for_CVPR_2018_paper.html
  33. M. Naseer, S. H. Khan, M. H. Khan, F. S. Khan, and F. Porikli, “Cross-domain transferability of adversarial perturbations,” in NeurIPS, 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/99cd3843754d20ec3c5885d805db8a32-Abstract.html
  34. Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding watermarks into deep neural networks,” in Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, ICMR 2017, Bucharest, Romania, June 6-9, 2017, B. Ionescu, N. Sebe, J. Feng, M. A. Larson, R. Lienhart, and C. Snoek, Eds.   ACM, 2017, pp. 269–277. [Online]. Available: https://doi.org/10.1145/3078971.3078974
  35. T. Wang and F. Kerschbaum, “RIGA: covert and robust white-box watermarking of deep neural networks,” in WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, Eds.   ACM / IW3C2, 2021, pp. 993–1004. [Online]. Available: https://doi.org/10.1145/3442381.3450000
  36. J. Zhang, D. Chen, J. Liao, H. Fang, W. Zhang, W. Zhou, H. Cui, and N. Yu, “Model watermarking for image processing networks,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.   AAAI Press, 2020, pp. 12 805–12 812. [Online]. Available: https://doi.org/10.1609/aaai.v34i07.6976
  37. H. Chen, B. D. Rouhani, and F. Koushanfar, “Blackmarks: Blackbox multibit watermarking for deep neural networks,” CoRR, vol. abs/1904.00344, 2019. [Online]. Available: http://arxiv.org/abs/1904.00344
  38. Y. Quan, H. Teng, Y. Chen, and H. Ji, “Watermarking deep neural networks in image processing,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 5, pp. 1852–1865, 2021. [Online]. Available: https://doi.org/10.1109/TNNLS.2020.2991378
  39. OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.08774
  40. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with CLIP latents,” CoRR, vol. abs/2204.06125, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2204.06125
  41. M. Ahmadi, A. Norouzi, N. Karimi, S. Samavi, and A. Emami, “Redmark: Framework for residual diffusion watermarking based on deep networks,” Expert Syst. Appl., vol. 146, p. 113157, 2020. [Online]. Available: https://doi.org/10.1016/j.eswa.2019.113157
  42. Y. Liu, M. Guo, J. Zhang, Y. Zhu, and X. Xie, “A novel two-stage separable deep learning framework for practical blind watermarking,” in Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, October 21-25, 2019, L. Amsaleg, B. Huet, M. A. Larson, G. Gravier, H. Hung, C. Ngo, and W. T. Ooi, Eds.   ACM, 2019, pp. 1509–1517. [Online]. Available: https://doi.org/10.1145/3343031.3351025
  43. Z. Jia, H. Fang, and W. Zhang, “MBRS: enhancing robustness of dnn-based watermarking by mini-batch of real and simulated JPEG compression,” in MM ’21: ACM Multimedia Conference, Virtual Event, China, October 20 - 24, 2021, H. T. Shen, Y. Zhuang, J. R. Smith, Y. Yang, P. César, F. Metze, and B. Prabhakaran, Eds.   ACM, 2021, pp. 41–49. [Online]. Available: https://doi.org/10.1145/3474085.3475324
  44. R. Ma, M. Guo, Y. Hou, F. Yang, Y. Li, H. Jia, and X. Xie, “Towards blind watermarking: Combining invertible and non-invertible mechanisms,” in MM ’22: The 30th ACM International Conference on Multimedia, Lisboa, Portugal, October 10 - 14, 2022, J. Magalhães, A. D. Bimbo, S. Satoh, N. Sebe, X. Alameda-Pineda, Q. Jin, V. Oria, and L. Toni, Eds.   ACM, 2022, pp. 1532–1542. [Online]. Available: https://doi.org/10.1145/3503161.3547950
  45. H. Wu, G. Liu, Y. Yao, and X. Zhang, “Watermarking neural networks with watermarked images,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 7, pp. 2591–2601, 2021. [Online]. Available: https://doi.org/10.1109/TCSVT.2020.3030671
  46. J. Fei, Z. Xia, B. Tondi, and M. Barni, “Supervised GAN watermarking for intellectual property protection,” in IEEE International Workshop on Information Forensics and Security, WIFS 2022, Shanghai, China, December 12-16, 2022.   IEEE, 2022, pp. 1–6. [Online]. Available: https://doi.org/10.1109/WIFS55849.2022.9975409
  47. T. Qiao, Y. Ma, N. Zheng, H. Wu, Y. Chen, M. Xu, and X. Luo, “A novel model watermarking for protecting generative adversarial network,” Comput. Secur., vol. 127, p. 103102, 2023. [Online]. Available: https://doi.org/10.1016/j.cose.2023.103102
  48. A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-based object detectors with online hard example mining,” in CVPR, 2016. [Online]. Available: https://doi.org/10.1109/CVPR.2016.89
  49. X. Wang, A. Shrivastava, and A. Gupta, “A-fast-rcnn: Hard positive generation via adversary for object detection,” in CVPR, 2017. [Online]. Available: https://doi.org/10.1109/CVPR.2017.324
  50. T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in ICCV, 2017. [Online]. Available: https://doi.org/10.1109/ICCV.2017.324
  51. A. Sinha, H. Namkoong, and J. C. Duchi, “Certifying some distributional robustness with principled adversarial training,” in ICLR, 2018. [Online]. Available: https://openreview.net/forum?id=Hk6kPgZA-
  52. M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, “Solving a class of non-convex min-max games using iterative first order methods,” in NeurIPS, 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/25048eb6a33209cb5a815bff0cf6887c-Abstract.html
  53. Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the convergence and robustness of adversarial training,” in ICML, 2019. [Online]. Available: http://proceedings.mlr.press/v97/wang19i.html
  54. H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition,” in ECML/PKDD, 2016. [Online]. Available: https://doi.org/10.1007/978-3-319-46128-1_50
  55. S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global minima of deep neural networks,” in ICML, 2019. [Online]. Available: http://proceedings.mlr.press/v97/du19c.html
  56. Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learning via over-parameterization,” in ICML, 2019. [Online]. Available: http://proceedings.mlr.press/v97/allen-zhu19a.html
  57. B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in CVPR, 2016. [Online]. Available: https://doi.org/10.1109/CVPR.2016.319
  58. G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in NeurIPS, S. Becker, S. Thrun, and K. Obermayer, Eds., 2002. [Online]. Available: https://proceedings.neurips.cc/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html
  59. R. B. Girshick, “Fast R-CNN,” in ICCV, 2015. [Online]. Available: https://doi.org/10.1109/ICCV.2015.169
  60. N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” in 2015 ieee information theory workshop (itw).   IEEE, 2015, pp. 1–5.
  61. J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in CVPR, 2009, pp. 248–255.
  62. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90
  63. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in ICLR, 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
  64. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in CVPR, 2017. [Online]. Available: https://doi.org/10.1109/CVPR.2017.243
  65. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in CVPR, 2016. [Online]. Available: https://doi.org/10.1109/CVPR.2016.308
  66. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” in AAAI, 2017. [Online]. Available: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
  67. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in ICLR, 2021.
  68. L. Gao, Q. Zhang, X. Zhu, J. Song, and H. T. Shen, “Staircase sign method for boosting adversarial attacks,” CoRR, vol. abs/2104.09722, 2021.
  69. Z. Wei, J. Chen, Z. Wu, and Y. Jiang, “Enhancing the self-universality for transferable targeted attacks,” in CVPR, 2023.
  70. Y. Long, Q. Zhang, B. Zeng, L. Gao, X. Liu, J. Zhang, and J. Song, “Frequency domain model augmentation for adversarial attack,” in ECCV, 2022.
  71. X. Yang, Y. Dong, T. Pang, H. Su, and J. Zhu, “Boosting transferability of targeted adversarial examples via hierarchical generative networks,” in ECCV, S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds., 2022.
  72. T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser. Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol. 8693.   Springer, 2014, pp. 740–755. [Online]. Available: https://doi.org/10.1007/978-3-319-10602-1_48
Citations (3)

Summary

We haven't generated a summary for this paper yet.