Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation and perturbations of stable solutions to a stationary mean field game system (2402.16377v4)

Published 26 Feb 2024 in math.AP, cs.NA, and math.NA

Abstract: This work introduces a new general approach for the numerical analysis of stable equilibria to second order mean field games systems in cases where the uniqueness of solutions may fail. For the sake of simplicity, we focus on a simple stationary case. We propose an abstract framework to study these solutions by reformulating the mean field game system as an abstract equation in a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation, meaning that the linearized system is well-posed. We provide three applications of this property: we study the sensitivity analysis of stable solutions, establish error estimates for their finite element approximations, and prove the local converge of Newton's method in infinite dimensions.

Summary

We haven't generated a summary for this paper yet.