Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Star-Searcher: A Complete and Efficient Aerial System for Autonomous Target Search in Complex Unknown Environments (2402.16348v2)

Published 26 Feb 2024 in cs.RO

Abstract: This paper tackles the challenge of autonomous target search using unmanned aerial vehicles (UAVs) in complex unknown environments. To fill the gap in systematic approaches for this task, we introduce Star-Searcher, an aerial system featuring specialized sensor suites, mapping, and planning modules to optimize searching. Path planning challenges due to increased inspection requirements are addressed through a hierarchical planner with a visibility-based viewpoint clustering method. This simplifies planning by breaking it into global and local sub-problems, ensuring efficient global and local path coverage in real-time. Furthermore, our global path planning employs a history-aware mechanism to reduce motion inconsistency from frequent map changes, significantly enhancing search efficiency. We conduct comparisons with state-of-the-art methods in both simulation and the real world, demonstrating shorter flight paths, reduced time, and higher target search completeness. Our approach will be open-sourced for community benefit at https://github.com/SYSU-STAR/STAR-Searcher.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.
  2. C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hierarchical framework for efficiently exploring complex 3d environments.” in Robotics: Science and Systems, vol. 5, 2021.
  3. T. Dang, C. Papachristos, and K. Alexis, “Autonomous exploration and simultaneous object search using aerial robots,” in 2018 IEEE Aerospace Conference.   IEEE, 2018, pp. 1–7.
  4. H. Kim, H. Kim, S. Lee, and H. Lee, “Autonomous exploration in a cluttered environment for a mobile robot with 2d-map segmentation and object detection,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6343–6350, 2022.
  5. S. Papatheodorou, N. Funk, D. Tzoumanikas, C. Choi, B. Xu, and S. Leutenegger, “Finding things in the unknown: Semantic object-centric exploration with an MAV,” in IEEE International Conference on Robotics and Automation, London, United Kingdom, May 2023.
  6. B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’.   IEEE, 1997, pp. 146–151.
  7. W. Gao, M. Booker, A. Adiwahono, M. Yuan, J. Wang, and Y. W. Yun, “An improved frontier-based approach for autonomous exploration,” in 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2018, pp. 292–297.
  8. J. Faigl and M. Kulich, “On determination of goal candidates in frontier-based multi-robot exploration,” in 2013 European Conference on Mobile Robots.   IEEE, 2013, pp. 210–215.
  9. M. Kulich, J. Kubalík, and L. Přeučil, “An integrated approach to goal selection in mobile robot exploration,” Sensors, vol. 19, no. 6, p. 1400, 2019.
  10. C. Dornhege and A. Kleiner, “A frontier-void-based approach for autonomous exploration in 3d,” Advanced Robotics, vol. 27, no. 6, pp. 459–468, 2013.
  11. L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 1071–1078.
  12. A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon” next-best-view” planner for 3d exploration,” in 2016 IEEE international conference on robotics and automation (ICRA).   IEEE, 2016, pp. 1462–1468.
  13. A. Akbari and S. Bernardini, “Informed autonomous exploration of subterranean environments,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7957–7964, 2021.
  14. L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto, “An efficient sampling-based method for online informative path planning in unknown environments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1500–1507, 2020.
  15. Z. Xu, D. Deng, and K. Shimada, “Autonomous uav exploration of dynamic environments via incremental sampling and probabilistic roadmap,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2729–2736, 2021.
  16. H. H. González-Banos and J.-C. Latombe, “Navigation strategies for exploring indoor environments,” The International Journal of Robotics Research, vol. 21, no. 10-11, pp. 829–848, 2002.
  17. T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration with multi-rotors: A frontier selection method for high speed flight,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2135–2142.
  18. B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration with a decentralized multi-uav system,” IEEE Transactions on Robotics, 2023.
  19. G. Best, J. Faigl, and R. Fitch, “Online planning for multi-robot active perception with self-organising maps,” Autonomous Robots, vol. 42, pp. 715–738, 2018.
  20. R. Ashour, T. Taha, J. M. M. Dias, L. Seneviratne, and N. Almoosa, “Exploration for object mapping guided by environmental semantics using uavs,” Remote Sensing, vol. 12, no. 5, p. 891, 2020.
  21. A. Asgharivaskasi and N. Atanasov, “Active bayesian multi-class mapping from range and semantic segmentation observations,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 1–7.
  22. A. A. Meera, M. Popović, A. Millane, and R. Siegwart, “Obstacle-aware adaptive informative path planning for uav-based target search,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 718–724.
  23. M. Kulkarni, M. Dharmadhikari, M. Tranzatto, S. Zimmermann, V. Reijgwart, P. De Petris, H. Nguyen, N. Khedekar, C. Papachristos, L. Ott, et al., “Autonomous teamed exploration of subterranean environments using legged and aerial robots,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 3306–3313.
  24. T. Roucek, M. Pecka, P. Cızek, T. Petrıcek, J. Bayer, V. Šalansky, T. Azayev, D. Hert, M. Petrlık, T. Báca, et al., “System for multi-robotic exploration of underground environments ctu-cras-norlab in the darpa subterranean challenge,” arXiv preprint arXiv:2110.05911, 2021.
  25. G. Best, R. Garg, J. Keller, G. A. Hollinger, and S. Scherer, “Resilient multi-sensor exploration of multifarious environments with a team of aerial robots,” in Robotics: Science and Systems (RSS), 2022.
  26. L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial robots,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 4423–4430.
  27. B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor trajectory generation for fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.
  28. K. Helsgaun, “An effective implementation of the lin–kernighan traveling salesman heuristic,” European journal of operational research, vol. 126, no. 1, pp. 106–130, 2000.
  29. W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3317–3324, 2021.
  30. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor uav on se (3),” in 49th IEEE conference on decision and control (CDC).   IEEE, 2010, pp. 5420–5425.
  31. J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, oct 2016, pp. 4193–4198.
Citations (6)

Summary

We haven't generated a summary for this paper yet.