Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation (2402.16280v2)

Published 26 Feb 2024 in cs.CV

Abstract: Nucleus instance segmentation from histopathology images suffers from the extremely laborious and expert-dependent annotation of nucleus instances. As a promising solution to this task, annotation-efficient deep learning paradigms have recently attracted much research interest, such as weakly-/semi-supervised learning, generative adversarial learning, etc. In this paper, we propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL). Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible, and we hope to leverage these external datasets to assist nucleus instance segmentation on the target dataset which only has very limited annotation. To achieve this goal, we adopt the meta-learning based FSL paradigm, which however has to be tailored in two substantial aspects before adapting to our task. First, since the novel classes may be inconsistent with those of the external dataset, we extend the basic definition of few-shot instance segmentation (FSIS) to generalized few-shot instance segmentation (GFSIS). Second, to cope with the intrinsic challenges of nucleus segmentation, including touching between adjacent cells, cellular heterogeneity, etc., we further introduce a structural guidance mechanism into the GFSIS network, finally leading to a unified Structurally-Guided Generalized Few-Shot Instance Segmentation (SGFSIS) framework. Extensive experiments on a couple of publicly accessible datasets demonstrate that, SGFSIS can outperform other annotation-efficient learning baselines, including semi-supervised learning, simple transfer learning, etc., with comparable performance to fully supervised learning with less than 5% annotations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one shot learning,” in Proceedings of the Advances in Neural Information Processing Systems, 2016, pp. 3630–3638.
  2. Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey on few-shot learning,” ACM Computing Surveys, vol. 53, no. 3, pp. 1–34, 2020.
  3. E. Abels, L. Pantanowitz, F. Aeffner, M. D. Zarella, J. Van Der Laak, M. M. Bui, V. N. Vemuri, A. V. Parwani, J. Gibbs, E. Agosto-Arroyo et al., “Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association,” The Journal of Pathology, vol. 249, no. 3, pp. 286–294, 2019.
  4. Y. Yuan, H. Failmezger, O. M. Rueda, H. R. Ali, S. Gräf, S.-F. Chin, R. F. Schwarz, C. Curtis, M. J. Dunning, H. Bardwell et al., “Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling,” Science Translational Medicine, vol. 4, no. 157, pp. 143–153, 2012.
  5. T. Qaiser and N. M. Rajpoot, “Learning where to see: A novel attention model for automated immunohistochemical scoring,” IEEE Transactions on Medical Imaging, vol. 38, no. 11, pp. 2620–2631, 2019.
  6. A. Kapil, A. Meier, K. Steele, M. Rebelatto, K. Nekolla, A. Haragan, A. Silva, A. Zuraw, C. Barker, M. L. Scott et al., “Domain adaptation-based deep learning for automated Tumor Cell (TC) scoring and survival analysis on pd-l1 stained tissue images,” IEEE Transactions on Medical Imaging, vol. 40, no. 9, pp. 2513–2523, 2021.
  7. M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE Reviews in Biomedical Engineering, vol. 2, pp. 147–171, 2009.
  8. R. J. Chen, M. Y. Lu, J. Wang, D. F. Williamson, S. J. Rodig, N. I. Lindeman, and F. Mahmood, “Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis,” IEEE Transactions on Medical Imaging, vol. 41, no. 4, pp. 757–770, 2020.
  9. N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and X. Ding, “Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation,” Medical Image Analysis, vol. 63, no. 101693, 2020.
  10. W. Zhang, J. Zhang, X. Wang, S. Yang, J. Huang, W. Yang, W. Wang, and X. Han, “Merging nucleus datasets by correlation-based cross-training,” Medical Image Analysis, vol. 84, no. 102705, 2023.
  11. C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models for computational histopathology: A survey,” Medical Image Analysis, vol. 67, no. 101813, 2021.
  12. A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “‘Squeeze & excite’guided few-shot segmentation of volumetric images,” Medical Image Analysis, vol. 59, no. 101587, 2020.
  13. L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes, and A. M. Bronstein, “Repmet: Representative-based metric learning for classification and few-shot object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5197–5206.
  14. H. Cui, D. Wei, K. Ma, S. Gu, and Y. Zheng, “A unified framework for generalized low-shot medical image segmentation with scarce data,” IEEE Transactions on Medical Imaging, vol. 40, no. 10, pp. 2656–2671, 2020.
  15. H. Tang, X. Liu, S. Sun, X. Yan, and X. Xie, “Recurrent mask refinement for few-shot medical image segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 3918–3928.
  16. R. Feng, X. Zheng, T. Gao, J. Chen, W. Wang, D. Z. Chen, and J. Wu, “Interactive few-shot learning: Limited supervision, better medical image segmentation,” IEEE Transactions on Medical Imaging, vol. 40, no. 10, pp. 2575–2588, 2021.
  17. F. Xing, Y. Xie, and L. Yang, “An automatic learning-based framework for robust nucleus segmentation,” IEEE Transactions on Medical Imaging, vol. 35, no. 2, pp. 550–566, 2015.
  18. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert, “Self-supervised learning for few-shot medical image segmentation,” IEEE Transactions on Medical Imaging, vol. 41, no. 7, pp. 1837–1848, 2022.
  19. H. Wu, F. Xiao, and C. Liang, “Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation,” in Proceedings of the European Conference on Computer Vision, 2022, pp. 417–434.
  20. Y. Feng, Y. Wang, H. Li, M. Qu, and J. Yang, “Learning what and where to segment: A new perspective on medical image few-shot segmentation,” Medical Image Analysis, vol. 87, no. 102834, 2023.
  21. R. Verma, N. Kumar, A. Patil, N. C. Kurian, S. Rane, S. Graham, Q. D. Vu, M. Zwager, S. E. A. Raza, N. Rajpoot et al., “MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3413–3423, 2021.
  22. J. Gamper, N. Alemi Koohbanani, K. Benet, A. Khuram, and N. Rajpoot, “Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification,” in Proceedings of the European Congress on Digital Pathology, 2019, pp. 11–19.
  23. J. Gamper, N. A. Koohbanani, K. Benes, S. Graham, M. Jahanifar, S. A. Khurram, A. Azam, K. Hewitt, and N. Rajpoot, “Pannuke dataset extension, insights and baselines,” arXiv:2003.10778, 2020.
  24. S. Graham, M. Jahanifar, A. Azam, M. Nimir, Y.-W. Tsang, K. Dodd, E. Hero, H. Sahota, A. Tank, K. Benes et al., “Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification,” in Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 684–693.
  25. S. Graham, M. Jahanifar, Q. D. Vu, G. Hadjigeorghiou, T. Leech, D. Snead, S. E. A. Raza, F. Minhas, and N. Rajpoot, “Conic: Colon nuclei identification and counting challenge 2022,” arXiv:2111.14485, 2021.
  26. A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 9404–9413.
  27. N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE Transactions on Medical Imaging, vol. 36, no. 7, pp. 1550–1560, 2017.
  28. S. E. A. Raza, L. Cheung, M. Shaban, S. Graham, D. Epstein, S. Pelengaris, M. Khan, and N. M. Rajpoot, “Micro-Net: A unified model for segmentation of various objects in microscopy images,” Medical Image Analysis, vol. 52, pp. 160–173, 2019.
  29. G. Hu, B. Wang, B. Hu, D. Chen, L. Hu, C. Li, Y. An, G. Hu, and G. Jia, “From wsi-level to patch-level: Structure prior-guided binuclear cell fine-grained detection,” Medical Image Analysis, vol. 89, no. 102931, 2023.
  30. H. Qu, Z. Yan, G. M. Riedlinger, S. De, and D. N. Metaxas, “Improving nuclei/gland instance segmentation in histopathology images by full resolution neural network and spatial constrained loss,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019, pp. 378–386.
  31. H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P.-A. Heng, “DCAN: Deep contour-aware networks for object instance segmentation from histology images,” Medical Image Analysis, vol. 36, pp. 135–146, 2017.
  32. Y. Zhou, O. F. Onder, Q. Dou, E. Tsougenis, H. Chen, and P.-A. Heng, “CIA-Net: Robust nuclei instance segmentation with contour-aware information aggregation,” in Proceedings of the International Conference on Information Processing in Medical Imaging, 2019, pp. 682–693.
  33. B. Zhao, X. Chen, Z. Li, Z. Yu, S. Yao, L. Yan, Y. Wang, Z. Liu, C. Liang, and C. Han, “Triple U-Net: Hematoxylin-aware nuclei segmentation with progressive dense feature aggregation,” Medical Image Analysis, vol. 65, no. 101786, 2020.
  34. H. He, J. Wang, P. Wei, F. Xu, X. Ji, C. Liu, and J. Chen, “TopoSeg: Topology-aware nuclear instance segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2023, pp. 21 307–21 316.
  35. P. Naylor, M. Laé, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE Transactions on Medical Imaging, vol. 38, no. 2, pp. 448–459, 2018.
  36. S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y. W. Tsang, J. T. Kwak, and N. Rajpoot, “Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images,” Medical Image Analysis, vol. 58, no. 101563, 2019.
  37. H. He, Z. Huang, Y. Ding, G. Song, L. Wang, Q. Ren, P. Wei, Z. Gao, and J. Chen, “CDNet: Centripetal direction network for nuclear instance segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 4026–4035.
  38. S. Chen, C. Ding, M. Liu, J. Cheng, and D. Tao, “CPP-Net: Context-aware polygon proposal network for nucleus segmentation,” IEEE Transactions on Image Processing, vol. 32, pp. 980–994, 2023.
  39. L. Hou, A. Agarwal, D. Samaras, T. M. Kurc, R. R. Gupta, and J. H. Saltz, “Robust histopathology image analysis: To label or to synthesize?” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8533–8542.
  40. F. Mahmood, D. Borders, R. J. Chen, G. N. McKay, K. J. Salimian, A. Baras, and N. J. Durr, “Deep adversarial training for multi-organ nuclei segmentation in histopathology images,” IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3257–3267, 2019.
  41. Y. Li, J. Chen, X. Xie, K. Ma, and Y. Zheng, “Self-loop uncertainty: A novel pseudo-label for semi-supervised medical image segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 614–623.
  42. H. Wu, Z. Wang, Y. Song, L. Yang, and J. Qin, “Cross-patch dense contrastive learning for semi-supervised segmentation of cellular nuclei in histopathologic images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 666–11 675.
  43. Q. Jin, H. Cui, C. Sun, J. Zheng, L. Wei, Z. Fang, Z. Meng, and R. Su, “Semi-supervised histological image segmentation via hierarchical consistency enforcement,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2022, pp. 3–13.
  44. J. Ke, Y. Lu, Y. Shen, J. Zhu, Y. Zhou, J. Huang, J. Yao, X. Liang, Y. Guo, Z. Wei et al., “Clusterseg: A crowd cluster pinpointed nucleus segmentation framework with cross-modality datasets,” Medical Image Analysis, vol. 85, no. 102758, 2023.
  45. D. Liu, D. Zhang, Y. Song, F. Zhang, L. O’Donnell, H. Huang, M. Chen, and W. Cai, “Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 4243–4252.
  46. S. Yang, J. Zhang, J. Huang, B. C. Lovell, and X. Han, “Minimizing labeling cost for nuclei instance segmentation and classification with cross-domain images and weak labels,” in Proceedings of the Association for the Advancement of Artificial Intelligence, vol. 35, no. 1, 2021, pp. 697–705.
  47. C. Li, D. Liu, H. Li, Z. Zhang, G. Lu, X. Chang, and W. Cai, “Domain adaptive nuclei instance segmentation and classification via category-aware feature alignment and pseudo-labelling,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2022, pp. 715–724.
  48. W. Lou, H. Li, G. Li, X. Han, and X. Wan, “Which pixel to annotate: A label-efficient nuclei segmentation framework,” IEEE Transactions on Medical Imaging, 2022.
  49. C. Han, H. Yao, B. Zhao, Z. Li, Z. Shi, L. Wu, X. Chen, J. Qu, K. Zhao, R. Lan et al., “Meta multi-task nuclei segmentation with fewer training samples,” Medical Image Analysis, vol. 80, no. 102481, 2022.
  50. H. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3655–3666, 2020.
  51. Y. Lin, Z. Qu, H. Chen, Z. Gao, Y. Li, L. Xia, K. Ma, Y. Zheng, and K.-T. Cheng, “Nuclei segmentation with point annotations from pathology images via self-supervised learning and co-training,” Medical Image Analysis, vol. 89, no. 102933, 2023.
  52. Y. Lin, Z. Wang, D. Zhang, K.-T. Cheng, and H. Chen, “BoNuS: Boundary mining for nuclei segmentation with partial point labels,” IEEE Transactions on Medical Imaging, 2024.
  53. R. Guo, K. Xie, M. Pagnucco, and Y. Song, “SAC-Net: Learning with weak and noisy labels in histopathology image segmentation,” Medical Image Analysis, vol. 86, no. 102790, 2023.
  54. Y. Zhou, Y. Wu, Z. Wang, B. Wei, M. Lai, J. Shou, Y. Fan, and Y. Xu, “Cyclic learning: Bridging image-level labels and nuclei instance segmentation,” IEEE Transactions on Medical Imaging, 2023.
  55. Z. Fan, J.-G. Yu, Z. Liang, J. Ou, C. Gao, G.-S. Xia, and Y. Li, “FGN: Fully guided network for few-shot instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 9172–9181.
  56. H. Wang, J. Liu, Y. Liu, S. Maji, J.-J. Sonke, and E. Gavves, “Dynamic transformer for few-shot instance segmentation,” in Proceedings of the ACM International Conference on Multimedia, 2022, pp. 2969–2977.
  57. K. Nguyen and S. Todorovic, “Fapis: A few-shot anchor-free part-based instance segmenter,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 099–11 108.
  58. Z. Tian, X. Lai, L. Jiang, S. Liu, M. Shu, H. Zhao, and J. Jia, “Generalized few-shot semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 563–11 572.
  59. C. Lang, G. Cheng, B. Tu, and J. Han, “Learning what not to segment: A new perspective on few-shot segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 8057–8067.
  60. J. Ma, Y. Niu, J. Xu, S. Huang, G. Han, and S.-F. Chang, “DiGeo: Discriminative geometry-aware learning for generalized few-shot object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 3208–3218.
  61. Z. Fan, Y. Ma, Z. Li, and J. Sun, “Generalized few-shot object detection without forgetting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 4527–4536.
  62. M. Köhler, M. Eisenbach, and H.-M. Gross, “Few-shot object detection: A comprehensive survey,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  63. G. Cheng, C. Lang, and J. Han, “Holistic prototype activation for few-shot segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  64. S. Hajimiri, M. Boudiaf, I. Ben Ayed, and J. Dolz, “A strong baseline for generalized few-shot semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 11 269–11 278.
  65. S.-A. Liu, Y. Zhang, Z. Qiu, H. Xie, Y. Zhang, and T. Yao, “Learning orthogonal prototypes for generalized few-shot semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023, pp. 11 319–11 328.
  66. C. Lang, G. Cheng, B. Tu, C. Li, and J. Han, “Base and meta: A new perspective on few-shot segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  67. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 234–241.
  68. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
  69. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  70. T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5149–5169, 2021.
  71. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

Summary

We haven't generated a summary for this paper yet.