Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finiteness Principles for Smooth Convex Functions (2402.16232v1)

Published 26 Feb 2024 in math.CA

Abstract: Let $E \subset \mathbb{R}n$ be a compact set, and $f:E \to \mathbb{R}$. How can we tell if there exists a convex extension $F \in C{1,1}(\mathbb{R}n)$ of $f$, i.e. satisfying $F|E = f|_E$? Assuming such an extension exists, how small can one take the Lipschitz constant $\text{Lip}(\nabla F): = \sup{x,y \in \mathbb{R}n, x \neq y} \frac{|\nabla F(x) - \nabla F(y)|}{|x-y|}$? We provide an answer to these questions for the class of strongly convex functions by proving that there exist constants $k# \in \mathbb{N}$ and $C>0$ depending only on the dimension $n$, such that if for every subset $S \subset E$, $#S \leq k#$, there exists an $\eta$-strongly convex function $FS \in C{1,1}(\mathbb{R}n)$ satisfying $FS|_S=f|_S$ and $\text{Lip}(\nabla FS) \leq M$, then there exists an ${\frac{\eta}{C}}$-strongly convex function $F \in C{1,1}_c(\mathbb{R}n)$ satisfying $F|_E = f|_E$, and $\text{Lip}(\nabla F) \leq C M2/\eta$. Further, we prove a Finiteness Principle for the space of convex functions in $C{1,1}(\mathbb{R})$ and that the sharp finiteness constant for this space is $k#=5$.

Summary

We haven't generated a summary for this paper yet.