Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory loss is contagious in open quantum systems (2402.16096v2)

Published 25 Feb 2024 in quant-ph

Abstract: Memoryless (Markovian) system-bath interactions are of fundamental interest in physics. While typically, the absence of memory originates from the characteristics of the bath, here we demonstrate that it can result from the system becoming lossy due to the Markovian interaction with a second bath. This uncovers an interesting interplay between independent baths and suggests that Markovianity is ``contagious'', i.e., it can be transferred from one bath to another through the system with which they both interact. We introduce a Bloch-Redfield-inspired approach that accounts for this distinct origin of Markovianity and uniquely combines non-Hermitian Hamiltonian formalism with master equations. This method significantly improves the description of the interaction between a lossy system (associated with a Lindblad master equation) and a non-Markovian bath, reducing the computational demands of complex system-bath setups across various fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, USA, 2002).
  2. I. de Vega and D. Alonso, Dynamics of non-markovian open quantum systems, Reviews of Modern Physics 89, 015001 (2017).
  3. K. Brandner, M. Bauer, and U. Seifert, Universal coherence-induced power losses of quantum heat engines in linear response, Physical Review Letters 119, 170602 (2017).
  4. H. Tajima and K. Funo, Superconducting-like heat current: Effective cancellation of current-dissipation trade-off by quantum coherence, Physical Review Letters 127, 190604 (2021).
  5. A. Dhahri and F. Mukhamedov, Open quantum random walks, quantum markov chains and recurrence, Reviews in Mathematical Physics 31, 1950020 (2019).
  6. F. Noé and E. Rosta, Markov models of molecular kinetics, The Journal of chemical physics 151 (2019).
  7. G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
  8. P. M. Visser and G. Nienhuis, Solution of quantum master equations in terms of a non-hermitian hamiltonian, Physical Review A 52, 4727 (1995).
  9. N. Moiseyev, Non-Hermitian quantum mechanics (Cambridge University Press, 2011).
  10. R. K. Wangsness and F. Bloch, The dynamical theory of nuclear induction, Physical Review 89, 728 (1953).
  11. A. G. Redfield, Nuclear magnetic resonance saturation and rotary saturation in solids, Physical Review 98, 1787 (1955).
  12. J. del Pino, J. Feist, and F. J. Garcia-Vidal, Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode, New Journal of Physics 17, 053040 (2015).
  13. U. Peskin, Quantum Mechanics in Nanoscience and Engineering (Cambridge University Press, 2023).
  14. J. Galego, F. J. Garcia-Vidal, and J. Feist, Suppressing photochemical reactions with quantized light fields, Nature Communications 7, 13841 (2016).
  15. F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Manipulating matter by strong coupling to vacuum fields, Science 373, eabd0336 (2021).
  16. J.-M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Reviews of Modern Physics 73, 565 (2001).
  17. A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Reviews of Modern Physics 87, 1379 (2015).
  18. P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: a review, Reports on Progress in Physics 78, 013901 (2014).
  19. F. Spano, Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in j-aggregates, The Journal of Chemical Physics 142 (2015).
  20. F. Herrera and F. C. Spano, Cavity-controlled chemistry in molecular ensembles, Physical Review Letters 116, 238301 (2016).
  21. K. Peng and E. Rabani, Polaritonic bottleneck in colloidal quantum dots, Nano Letters  (2023).
  22. M. Tavis and F. W. Cummings, Exact solution for an n-molecule—radiation-field hamiltonian, Physical Review 170, 379 (1968).
  23. W. E. Lamb Jr and R. C. Retherford, Fine structure of the hydrogen atom by a microwave method, Physical Review 72, 241 (1947).

Summary

We haven't generated a summary for this paper yet.