Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing UAV Fog Deployment Efficiency for Critical Rescue Operations (2402.16052v1)

Published 25 Feb 2024 in cs.NI, cs.AI, and eess.SP

Abstract: In disaster scenarios and high-stakes rescue operations, integrating Unmanned Aerial Vehicles (UAVs) as fog nodes has become crucial. This integration ensures a smooth connection between affected populations and essential health monitoring devices, supported by the Internet of Things (IoT). Integrating UAVs in such environments is inherently challenging, where the primary objectives involve maximizing network connectivity and coverage while extending the network's lifetime through energy-efficient strategies to serve the maximum number of affected individuals. In this paper, We propose a novel model centred around dynamic UAV-based fog deployment that optimizes the system's adaptability and operational efficacy within the afflicted areas. First, we decomposed the problem into two subproblems. Connectivity and coverage subproblem, and network lifespan optimization subproblem. We shape our UAV fog deployment problem as a uni-objective optimization and introduce a specialized UAV fog deployment algorithm tailored specifically for UAV fog nodes deployed in rescue missions. While the network lifespan optimization subproblem is efficiently solved via a one-dimensional swapping method. Following that, We introduce a novel optimization strategy for UAV fog node placement in dynamic networks during evacuation scenarios, with a primary focus on ensuring robust connectivity and maximal coverage for mobile users, while extending the network's lifespan. Finally, we introduce Adaptive Whale Optimization Algorithm (WOA) for fog node deployment in a dynamic network. Its agility, rapid convergence, and low computational demands make it an ideal fit for high-pressure environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. S. I. Han, “Survey on uav deployment and trajectory in wireless communication networks: applications and challenges,” Information, vol. 13, no. 8, p. 389, 2022.
  2. F. Cheng, S. Zhang, Z. Li, Y. Chen, N. Zhao, F. R. Yu, and V. C. Leung, “Uav trajectory optimization for data offloading at the edge of multiple cells,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6732–6736, 2018.
  3. H. Hydher, D. N. K. Jayakody, K. T. Hemachandra, and T. Samarasinghe, “Intelligent uav deployment for a disaster-resilient wireless network,” Sensors, vol. 20, no. 21, p. 6140, 2020.
  4. Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for uav-enabled mobile relaying systems,” IEEE Transactions on communications, vol. 64, no. 12, pp. 4983–4996, 2016.
  5. N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A crowd surveillance use case,” IEEE Communications Magazine, vol. 55, no. 2, pp. 128–134, 2017.
  6. “On the Co-Selection of Vision Transformer Features and Images for Very High-Resolution Image Scene Classification,” Remote Sensing, vol. 14, no. 22, p. 5817, nov 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/22/5817
  7. D. Wei, F. Shi, and S. Dhelim, “A Self-Supervised Learning Model for Unknown Internet Traffic Identification Based on Surge Period,” Future Internet, vol. 14, no. 10, p. 289, oct 2022. [Online]. Available: https://www.mdpi.com/1999-5903/14/10/289
  8. N. Aung, T. Kechadi, T. Zhu, S. Zerdoumi, T. Guerbouz, and S. Dhelim, “Blockchain Application on the Internet of Vehicles (IoV),” 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE), pp. 586–591, nov 2022. [Online]. Available: https://ieeexplore.ieee.org/document/10101404/
  9. N. Aung, S. Dhelim, H. Ning, A. Kerrache, S. Boumaraf, L. Chen, and M.-T. Kechadi, “Web3-enabled Metaverse: The Internet of Digital Twins in a Decentralised Metaverse,” Techrxiv, jan 2024. [Online]. Available: http://dx.doi.org/10.36227/techrxiv.170421448.84658585/v1
  10. S. Dhelim, H. Ning, and T. Zhu, “STLF: Spatial-temporal-logical knowledge representation and object mapping framework,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, oct 2016, pp. 001 550–001 554. [Online]. Available: http://ieeexplore.ieee.org/document/7844459/
  11. S. Dhelim, H. Ning, and N. Aung, “ComPath: User Interest Mining in Heterogeneous Signed Social Networks for Internet of People,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 7024–7035, apr 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9253614/
  12. N. Aung, T. Kechadi, L. Chen, and S. Dhelim, “IP-UNet: Intensity Projection UNet Architecture for 3D Medical Volume Segmentation,” 2023. [Online]. Available: https://arxiv.org/abs/2308.12761
  13. S. Dhelim, L. Chen, H. Ning, and C. Nugent, “Artificial intelligence for suicide assessment using Audiovisual Cues: a review,” Artificial Intelligence Review, vol. 56, no. 6, pp. 5591–5618, jun 2023. [Online]. Available: https://link.springer.com/10.1007/s10462-022-10290-6
  14. S. Dhelim, L. Chen, N. Aung, W. Zhang, and H. Ning, “A hybrid personality-aware recommendation system based on personality traits and types models,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 9, pp. 12 775–12 788, sep 2023. [Online]. Available: https://link.springer.com/10.1007/s12652-022-04200-5
  15. S. Dhelim, L. Chen, S. K. Das, H. Ning, C. Nugent, G. Leavey, D. Pesch, E. Bantry-White, and D. Burns, “Detecting Mental Distresses Using Social Behavior Analysis in the Context of COVID-19: A Survey,” ACM Computing Surveys, vol. 55, no. 14s, pp. 1–30, dec 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3589784
  16. E. Koyuncu, M. Shabanighazikelayeh, and H. Seferoglu, “Deployment and trajectory optimization of uavs: A quantization theory approach,” IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 8531–8546, 2018.
  17. D. S. Lakew, A. Masood, and S. Cho, “3d uav placement and trajectory optimization in uav assisted wireless networks,” in 2020 International Conference on Information Networking (ICOIN).   IEEE, 2020, pp. 80–82.
  18. Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory optimization,” IEEE Transactions on wireless communications, vol. 16, no. 6, pp. 3747–3760, 2017.
  19. Y. M. Park, Y. K. Tun, and C. S. Hong, “Optimized deployment of multi-uav based on machine learning in uav-hst networking,” in 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS).   IEEE, 2020, pp. 102–107.
  20. X. Liu, B. Lai, B. Lin, and V. C. Leung, “Joint communication and trajectory optimization for multi-uav enabled mobile internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15 354–15 366, 2022.
  21. D.-H. Tran, V.-D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, “Uav relay-assisted emergency communications in iot networks: Resource allocation and trajectory optimization,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1621–1637, 2021.
  22. X. Li, H. Yao, J. Wang, S. Wu, C. Jiang, and Y. Qian, “Rechargeable multi-uav aided seamless coverage for qos-guaranteed iot networks,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 902–10 914, 2019.
  23. T. Yu, X. Wang, and A. Shami, “Uav-enabled spatial data sampling in large-scale iot systems using denoising autoencoder neural network,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1856–1865, 2018.
  24. O. S. Oubbati, A. Lakas, P. Lorenz, M. Atiquzzaman, and A. Jamalipour, “Leveraging communicating uavs for emergency vehicle guidance in urban areas,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2, pp. 1070–1082, 2019.
  25. F. Malandrino, C.-F. Chiasserini, C. Casetti, L. Chiaraviglio, and A. Senacheribbe, “Planning uav activities for efficient user coverage in disaster areas,” Ad Hoc Networks, vol. 89, pp. 177–185, 2019.
  26. P. V. Klaine, J. P. Nadas, R. D. Souza, and M. A. Imran, “Distributed drone base station positioning for emergency cellular networks using reinforcement learning,” Cognitive computation, vol. 10, no. 5, pp. 790–804, 2018.
  27. M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–1650, 2016.
  28. ——, “Drone small cells in the clouds: Design deployment and performance analysis,” in Global Communications Conference (GLOBECOM) 2015 IEEE.   IEEE, 2015, pp. 1–6.
  29. A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low altitude platforms in urban environments,” in Global Communications Conference (GLOBECOM).   IEEE, 2014, pp. 2898–2904.
  30. A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum coverage,” IEEE Wireless Communications Letters, vol. 3, pp. 569–572, 2014.
  31. Z. Wei, Y. Murillo, O. Amin, F. Rosas, M. S. Alouini, and S. Pollin, “Coverage maximization for a poisson field of drone cells,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).   IEEE, 2017, pp. 1–6.
  32. Z. Wei, H. Wu, Z. Feng, and S. Chang, “Capacity of uav relaying networks,” IEEE Access, vol. 7, pp. 27 207–27 216, 2019.
  33. Z. Wei, Q. Chen, S. Liu, and H. Wu, “Capacity of unmanned aerial vehicle assisted data collection in wireless sensor networks,” IEEE Access, vol. 8, pp. 162 819–162 829, 2020.
  34. Z. Na, J. Wang, C. Liu, M. Guan, and Z. Gao, “Join trajectory optimization and communication design for uav-enabled ofdm networks,” Ad Hoc Networks, vol. 98, p. 102031, 2020.
  35. J. Cui, B. Hu, and S. Chen, “A decision-making scheme for uav maximizes coverage of emergency indoor and outdoor users,” Ad Hoc Networks, vol. 112, p. 102391, 2021.
  36. N. Zhao, W. Lu, M. Sheng, Y. Chen, J. Tang, F. R. Yu, and K. Wong, “Uav-assisted emergency networks in disasters,” IEEE Wireless Communications, vol. 26, pp. 45–51, 2019.
  37. M. Peer, V. A. Bohara, and A. Srivastava, “Multi-uav placement strategy for disaster-resilient communication network,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).   IEEE, 2020, pp. 1–7.
  38. M. Gupta and S. Varma, “Optimal placement of uavs of an aerial mesh network in an emergency situation,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 343–358, 2020.
  39. M. R. Brust, M. I. Akbas, and D. Turgut, “Vbca: A virtual forces clustering algorithm for autonomous aerial drone systems,” in 2016 Annual IEEE Systems Conference (SysCon).   IEEE, 2016, pp. 1–6.
  40. H. Duan, J. Zhao, Y. Deng, Y. Shi, and X. Ding, “Dynamic discrete pigeon-inspired optimization for multi-uav cooperative search-attack mission planning,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 706–720, Feb 2021.
  41. M. Senanayake and I. Senthooran, “Search and tracking algorithms for swarms of robots: A survey,” Robotics and Autonomous Systems, vol. 75, pp. 422–434, 2016.
  42. L. WANG, X. WU, Y. WANG, Z. XIAO, L. LI, and A. FEI, “On uav serving node deployment for temporary coverage in forest environment: A hierarchical deep reinforcement learning approach,” Chinese Journal of Electronics, vol. 32, no. 4, pp. 760–772, 2023.
  43. N. Lin, Y. Liu, L. Zhao, D. O. Wu, and Y. Wang, “An adaptive uav deployment scheme for emergency networking,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2383–2398, 2021.
  44. H. Zhao, H. Wang, W. Wu, and J. Wei, “Deployment algorithms for uav airborne networks toward on-demand coverage,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 2015–2031, 2018.
  45. Z. Wang, L. Duan, and R. Zhang, “Adaptive deployment for uav-aided communication networks,” IEEE transactions on wireless communications, vol. 18, no. 9, pp. 4531–4543, 2019.
  46. B. Li, C. Chen, R. Zhang, H. Jiang, and X. Guo, “The energy-efficient uav-based bs coverage in air-to-ground communications,” in 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018, pp. 578–581.
  47. E. Turgut, M. C. Gursoy, and I. Guvenc, “Energy harvesting in unmanned aerial vehicle networks with 3d antenna radiation patterns,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.
  48. M. M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, “Ultra reliable uav communication using altitude and cooperation diversity,” IEEE Transactions on Communications, vol. 66, no. 1, pp. 330–344, 2017.
  49. K. Wang, C. Pan, H. Ren, W. Xu, L. Zhang, and A. Nallanathan, “Packet error probability and effective throughput for ultra-reliable and low-latency uav communications,” IEEE Transactions on Communications, vol. 69, no. 1, pp. 73–84, 2020.
  50. A. Khelloufi, H. Ning, A. B. Sada, A. Naouri, and S. Dhelim, “Context-Aware Service Recommendation System for the Social Internet of Things,” 2023. [Online]. Available: https://arxiv.org/abs/2308.08499
  51. A. Ben Sada, A. Naouri, A. Khelloufi, S. Dhelim, and H. Ning, “A Context-Aware Edge Computing Framework for Smart Internet of Things,” Future Internet, vol. 15, no. 5, p. 154, apr 2023. [Online]. Available: https://www.mdpi.com/1999-5903/15/5/154
  52. C.-C. Lin, D.-J. Deng, S. Suwatcharachaitiwong, and Y.-S. Li, “Dynamic weighted fog computing device placement using a bat-inspired algorithm with dynamic local search selection,” Mobile Networks and Applications, vol. 25, pp. 1805–1815, 2020.
  53. S. M. Taleb, Y. Meraihi, A. B. Gabis, S. Mirjalili, A. Zaguia, and A. Ramdane-Cherif, “Solving the mesh router nodes placement in wireless mesh networks using coyote optimization algorithm,” Ieee Access, vol. 10, pp. 52 744–52 759, 2022.
  54. H. Guo and J. Liu, “Uav-enhanced intelligent offloading for internet of things at the edge,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2737–2746, 2020.
  55. S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in engineering software, vol. 95, pp. 51–67, 2016.
  56. A. Naouri, N. A. Nouri, S. Dhelim, A. Khelloufi, A. B. Sada, and H. Ning, “Efficient Fog Node Placement using Nature-Inspired Metaheuristic for IoT Applications,” 2023. [Online]. Available: https://arxiv.org/abs/2302.05948
  57. N. Abdenacer, N. N. Abdelkader, A. Qammar, F. Shi, H. Ning, and S. Dhelim, “Task Offloading for Smart Glasses in Healthcare: Enhancing Detection of Elevated Body Temperature,” in 2023 IEEE International Conference on Smart Internet of Things (SmartIoT).   IEEE, aug 2023, pp. 243–250. [Online]. Available: https://ieeexplore.ieee.org/document/10296320/
  58. N. Aung, S. Dhelim, L. Chen, A. Lakas, W. Zhang, H. Ning, S. Chaib, and M. T. Kechadi, “VeSoNet: Traffic-Aware Content Caching for Vehicular Social Networks Using Deep Reinforcement Learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8638–8649, aug 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10070376/
  59. “DIFTOS: A Distributed Infrastructure-Free Traffic Optimization System Based on Vehicular Ad Hoc Networks for Urban Environments,” Sensors, vol. 18, no. 8, p. 2567, aug 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/8/2567
  60. N. Aung, W. Zhang, S. Dhelim, and Y. Ai, “T-Coin: Dynamic Traffic Congestion Pricing System for the Internet of Vehicles in Smart Cities,” Information, vol. 11, no. 3, p. 149, mar 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/3/149

Summary

We haven't generated a summary for this paper yet.