Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Hardness Results for Learning Intersections of Halfspaces (2402.15995v1)

Published 25 Feb 2024 in cs.CC, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We show strong (and surprisingly simple) lower bounds for weakly learning intersections of halfspaces in the improper setting. Strikingly little is known about this problem. For instance, it is not even known if there is a polynomial-time algorithm for learning the intersection of only two halfspaces. On the other hand, lower bounds based on well-established assumptions (such as approximating worst-case lattice problems or variants of Feige's 3SAT hypothesis) are only known (or are implied by existing results) for the intersection of super-logarithmically many halfspaces [KS09,KS06,DSS16]. With intersections of fewer halfspaces being only ruled out under less standard assumptions DV21. We significantly narrow this gap by showing that even learning $\omega(\log \log N)$ halfspaces in dimension $N$ takes super-polynomial time under standard assumptions on worst-case lattice problems (namely that SVP and SIVP are hard to approximate within polynomial factors). Further, we give unconditional hardness results in the statistical query framework. Specifically, we show that for any $k$ (even constant), learning $k$ halfspaces in dimension $N$ requires accuracy $N{-\Omega(k)}$, or exponentially many queries -- in particular ruling out SQ algorithms with polynomial accuracy for $\omega(1)$ halfspaces. To the best of our knowledge this is the first unconditional hardness result for learning a super-constant number of halfspaces. Our lower bounds are obtained in a unified way via a novel connection we make between intersections of halfspaces and the so-called parallel pancakes distribution [DKS17,BLPR19,BRST21] that has been at the heart of many lower bound constructions in (robust) high-dimensional statistics in the past few years.

Citations (1)

Summary

We haven't generated a summary for this paper yet.