Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk (2402.15936v1)
Abstract: This paper presents a Monte-Carlo-based artificial neural network framework for pricing Bermudan options, offering several notable advantages. These advantages encompass the efficient static hedging of the target Bermudan option and the effective generation of exposure profiles for risk management. We also introduce a novel optimisation algorithm designed to expedite the convergence of the neural network framework proposed by Lokeshwar et al. (2022) supported by a comprehensive error convergence analysis. We conduct an extensive comparative analysis of the Present Value (PV) distribution under Markovian and no-arbitrage assumptions. We compare the proposed neural network model in conjunction with the approach initially introduced by Longstaff and Schwartz (2001) and benchmark it against the COS model, the pricing model pioneered by Fang and Oosterlee (2009), across all Bermudan exercise time points. Additionally, we evaluate exposure profiles, including Expected Exposure and Potential Future Exposure, generated by our proposed model and the Longstaff-Schwartz model, comparing them against the COS model. We also derive exposure profiles at finer non-standard grid points or risk horizons using the proposed approach, juxtaposed with the Longstaff Schwartz method with linear interpolation and benchmark against the COS method. In addition, we explore the effectiveness of various interpolation schemes within the context of the Longstaff-Schwartz method for generating exposures at finer grid horizons.
- Longstaff, F.A., Schwartz, E.S.: Valuing american options by simulation: a simple least-squares approach. The review of financial studies 14(1), 113–147 (2001) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numerische Mathematik 114(1), 27–62 (2009) Carriere [1996] Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numerische Mathematik 114(1), 27–62 (2009) Carriere [1996] Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numerische Mathematik 114(1), 27–62 (2009) Carriere [1996] Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Carriere, J.F.: Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: mathematics and Economics 19(1), 19–30 (1996) Tsitsiklis and Van Roy [2001] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex american-style options. IEEE Transactions on Neural Networks 12(4), 694–703 (2001) Clément et al. [2002] Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression method for american option pricing. Finance and Stochastics 6, 449–471 (2002) Glasserman and Yu [2004] Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Glasserman, P., Yu, B.: Number of paths versus number of basis functions in american option pricing (2004) Lord et al. [2008] Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate fft-based method for pricing early-exercise options under lévy processes. SIAM Journal on Scientific Computing 30(4), 1678–1705 (2008) Fang and Oosterlee [2009] Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Fang, F., Oosterlee, C.W.: A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing 31(2), 826–848 (2009) Jain and Oosterlee [2015] Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: Efficient pricing of bermudan options and their greeks. Applied Mathematics and Computation 269, 412–431 (2015) Kohler et al. [2010] Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional american options by neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20(3), 383–410 (2010) Lapeyre and Lelong [2021] Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Lapeyre, B., Lelong, J.: Neural network regression for bermudan option pricing. Monte Carlo Methods and Applications 27(3), 227–247 (2021) Chen and Wan [2021] Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Chen, Y., Wan, J.W.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 21(1), 45–67 (2021) Becker et al. [2021] Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Becker, S., Cheridito, P., Jentzen, A., Welti, T.: Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics 32(3), 470–514 (2021) De Graaf et al. [2014] De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- De Graaf, C.S., Feng, Q., Kandhai, D., Oosterlee, C.W.: Efficient computation of exposure profiles for counterparty credit risk. International Journal of Theoretical and Applied Finance 17(04), 1450024 (2014) Karlsson et al. [2016] Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Karlsson, P., Jain, S., Oosterlee, C.W.: Counterparty credit exposures for interest rate derivatives using the stochastic grid bundling method. Applied Mathematical Finance 23(3), 175–196 (2016) Gnoatto et al. [2023] Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Gnoatto, A., Picarelli, A., Reisinger, C.: Deep xva solver: A neural network–based counterparty credit risk management framework. SIAM Journal on Financial Mathematics 14(1), 314–352 (2023) Black and Scholes [1973] Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Black, F., Scholes, M.: The pricing of options and corporate liabilities, pp. 637–654 (1973) Bishop et al. [1995] Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford university press, ??? (1995) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Oosterlee and Grzelak [2019] Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019) Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)
- Oosterlee, C.W., Grzelak, L.A.: Mathematical Modeling and Computation in Finance: with Exercises and Python and MATLAB Computer Codes. World Scientific, ??? (2019)