Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gait-Based Privacy Protection for Smart Wearable Devices (2402.15797v1)

Published 24 Feb 2024 in cs.CR

Abstract: Smart wearable devices (SWDs) collect and store sensitive daily information of many people. Its primary method of identification is still the password unlocking method. However, several studies have shown serious security flaws in that method, which makes the privacy and security concerns of SWDs particularly urgent. Gait identification is well suited for SWDs because its built-in sensors can provide data support for identification. However, existing gait identification methods have low accuracy and neglect to protect the privacy of gait features. In addition, the SWD can be used as an internet of things device for users to share data. But few studies have used gait feature-based encryption schemes to protect the privacy of message interactions between SWDs and other devices. In this paper, we propose a gait identification network, a bi-directional long short-term memory network with an attention mechanism (ABLSTM), to improve the identification accuracy and a stochastic orthogonal transformation (SOT) scheme to protect the extracted gait features from leakage. In the experiments, ABLSTM achieves an accuracy of 95.28%, reducing previous error rate by 19.3%. The SOT scheme is proved to be resistant to the chosen plaintext attack (CPA) and is 30% faster than previous methods. A biometric-based encryption scheme is proposed to enable secure message interactions using gait features as keys after the gait identification stage is passed, and offers better protection of the gait features compared to previous schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. S. Wang, R. Bie, F. Zhao, N. Zhang, X. Cheng, and H.-A. Choi, “Security in wearable communications,” IEEE Network, vol. 30, no. 5, pp. 61–67, 2016.
  2. S. Stephenson, B. Pal, S. Fan, E. Fernandes, Y. Zhao, and R. Chatterjee, “Sok: Authentication in augmented and virtual reality,” in 2022 IEEE Symposium on Security and Privacy (SP).   IEEE, 2022, pp. 267–284.
  3. A. Bujari, O. Gaggi, C. E. Palazzi, and G. Quadrio, “Smart wearable sensors: Analysis of a real case study,” in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).   IEEE, 2018, pp. 37–41.
  4. IDC. Wearable Devices Market Share. (2022, March 22). [Online]. Available: https://www.idc.com/promo/wearablevendor
  5. C. Wang, X. Guo, Y. Chen, Y. Wang, and B. Liu, “Personal pin leakage from wearable devices,” IEEE Transactions on Mobile Computing, vol. 17, no. 3, pp. 646–660, 2017.
  6. Y. Li, Y. Cheng, W. Meng, Y. Li, and R. H. Deng, “Designing leakage-resilient password entry on head-mounted smart wearable glass devices,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 307–321, 2020.
  7. S. Li, C. Xu, Y. Zhang, and J. Zhou, “A secure two-factor authentication scheme from password-protected hardware tokens,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 3525–3538, 2022.
  8. S. T. Ali, V. Sivaraman, and D. Ostry, “Zero reconciliation secret key generation for body-worn health monitoring devices,” in Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, 2012, pp. 39–50.
  9. C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe? your wearable devices reveal your personal pin,” in Proceedings of the 11th ACM on Asia conference on computer and communications security, 2016, pp. 189–200.
  10. M. N. Aman, M. H. Basheer, and B. Sikdar, “A lightweight protocol for secure data provenance in the internet of things using wireless fingerprints,” IEEE Systems Journal, vol. 15, no. 2, pp. 2948–2958, 2020.
  11. M. Kumar, K. S. Raju, D. Kumar, N. Goyal, S. Verma, and A. Singh, “An efficient framework using visual recognition for iot based smart city surveillance,” Multimedia Tools and Applications, vol. 80, no. 20, pp. 31 277–31 295, 2021.
  12. R. Gad, A. A. Abd El-Latif, S. Elseuofi, H. M. Ibrahim, M. Elmezain, and W. Said, “Iot security based on iris verification using multi-algorithm feature level fusion scheme,” in 2019 2nd international conference on computer applications & information security (ICCAIS).   IEEE, 2019, pp. 1–6.
  13. R. Das, E. Piciucco, E. Maiorana, and P. Campisi, “Convolutional neural network for finger-vein-based biometric identification,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 2, pp. 360–373, 2018.
  14. A. Genovese, V. Piuri, K. N. Plataniotis, and F. Scotti, “Palmnet: Gabor-pca convolutional networks for touchless palmprint recognition,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3160–3174, 2019.
  15. A. Murphy, I. Yanushevskaya, A. N. Chasaide, and C. Gobl, “Integrating a voice analysis-synthesis system with a tts framework for controlling affect and speaker identity,” in 2021 32nd Irish Signals and Systems Conference (ISSC).   IEEE, 2021, pp. 1–6.
  16. L. Huang, J. Yang, X. Wu, and X. Hu, “A novel biological recognition method based on cranio-maxillo-facial feature information,” in 2009 Sixth International Conference on Information Technology: New Generations.   IEEE, 2009, pp. 28–32.
  17. A. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.
  18. W. Ilewicz, K. Skrzypczyk, A. Galuszka, T. Grzejszczak, D. Bereska, and M. Pacholczyk, “Estimation of uncertainty of imu module measurement results,” in 2018 International Conference on Signals and Electronic Systems (ICSES).   IEEE, 2018, pp. 92–95.
  19. H. J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, and S.-M. Makela, “Identifying people from gait pattern with accelerometers,” in Biometric Technology for Human Identification II, vol. 5779.   International Society for Optics and Photonics, 2005, pp. 7–14.
  20. L. Rong, D. Zhiguo, Z. Jianzhong, and L. Ming, “Identification of individual walking patterns using gait acceleration,” in 2007 1st international conference on bioinformatics and biomedical engineering.   IEEE, 2007, pp. 543–546.
  21. G. Batchuluun, H. S. Yoon, J. K. Kang, and K. R. Park, “Gait-based human identification by combining shallow convolutional neural network-stacked long short-term memory and deep convolutional neural network,” IEEE Access, vol. 6, pp. 63 164–63 186, 2018.
  22. T. Zhu, L. Fu, Q. Liu, Z. Lin, Y. Chen, and T. Chen, “One cycle attack: Fool sensor-based personal gait authentication with clustering,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 553–568, 2020.
  23. L. Tran, T. Hoang, T. Nguyen, H. Kim, and D. Choi, “Multi-model long short-term memory network for gait recognition using window-based data segment,” IEEE Access, vol. 9, pp. 23 826–23 839, 2021.
  24. R. Li, C. Song, D. Wang, F. Meng, Y. Wang, and Q. Tang, “A novel approach for gait recognition based on cc-lstm-cnn method,” in 2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC).   IEEE, 2021, pp. 25–28.
  25. E. A. Rúa, D. Preuveneers, W. Joosen et al., “On the security of biometrics and fuzzy commitment cryptosystems: A study on gait authentication,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5211–5224, 2021.
  26. H. Pan, Y. Chen, T. Xu, Y. He, and Z. He, “Toward complete-view and high-level pose-based gait recognition,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 2104–2118, 2023.
  27. A. Shamir, “Identity-based cryptosystems and signature schemes,” in Workshop on the theory and application of cryptographic techniques.   Springer, 1984, pp. 47–53.
  28. Y. Mao, J. Li, M.-R. Chen, J. Liu, C. Xie, and Y. Zhan, “Fully secure fuzzy identity-based encryption for secure iot communications,” Computer Standards & Interfaces, vol. 44, pp. 117–121, 2016.
  29. T. T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, and Y. Yagi, “The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication,” Pattern Recognition, vol. 47, no. 1, pp. 228–237, 2014.
  30. Q. Zou, Y. Wang, Q. Wang, Y. Zhao, and Q. Li, “Deep learning-based gait recognition using smartphones in the wild,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3197–3212, 2020.
  31. Y. Zhang, G. Pan, K. Jia, M. Lu, Y. Wang, and Z. Wu, “Accelerometer-based gait recognition by sparse representation of signature points with clusters,” IEEE Transactions on Cybernetics, vol. 45, no. 9, pp. 1864–1875, 2014.
  32. M. A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, and H.-P. Tan, “Deep activity recognition models with triaxial accelerometers,” in Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
  33. T.-S. Chen, T.-Y. Lin, and Y.-W. P. Hong, “Gait phase segmentation using weighted dynamic time warping and k-nearest neighbors graph embedding,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 1180–1184.
  34. G. Pan, Y. Zhang, and Z. Wu, “Accelerometer-based gait recognition via voting by signature points,” Electronics letters, vol. 45, no. 22, pp. 1116–1118, 2009.
  35. L. Tran and D. Choi, “Data augmentation for inertial sensor-based gait deep neural network,” IEEE Access, vol. 8, pp. 12 364–12 378, 2020.
  36. L. V. R. Asuncion, J. X. P. De Mesa, P. K. H. Juan, N. T. Sayson, and A. R. D. Cruz, “Thigh motion-based gait analysis for human identification using inertial measurement units (imus),” in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).   IEEE, 2018, pp. 1–6.
  37. I. Bouraoui and F. Merazka, “Performance and security evaluation of palmprint biometric templates,” in 2015 4th International Conference on Electrical Engineering (ICEE).   IEEE, 2015, pp. 1–4.
  38. M. Lakhera, M. Rauthan, and A. Agarwal, “An efficient cryptographic algorithm for securing biometric template using aes and scrambling the pixels of row and column,” in 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE).   IEEE, 2016, pp. 228–231.
  39. J. Kolberg, P. Drozdowski, M. Gomez-Barrero, C. Rathgeb, and C. Busch, “Efficiency analysis of post-quantum-secure face template protection schemes based on homomorphic encryption,” in 2020 International Conference of the Biometrics Special Interest Group (BIOSIG).   IEEE, 2020, pp. 1–4.
  40. D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Annual international cryptology conference.   Springer, 2001, pp. 213–229.
  41. D. Boneh and X. Boyen, “Efficient selective-id secure identity-based encryption without random oracles,” in International conference on the theory and applications of cryptographic techniques.   Springer, 2004, pp. 223–238.
  42. B. Waters, “Efficient identity-based encryption without random oracles,” in Annual International Conference on the Theory and Applications of Cryptographic Techniques.   Springer, 2005, pp. 114–127.
  43. C. Gentry, “Practical identity-based encryption without random oracles,” in Annual international conference on the theory and applications of cryptographic techniques.   Springer, 2006, pp. 445–464.
  44. B. Waters, “Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions,” in Annual International Cryptology Conference.   Springer, 2009, pp. 619–636.
  45. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual international conference on the theory and applications of cryptographic techniques.   Springer, 2005, pp. 457–473.
  46. F. Guo, W. Susilo, and Y. Mu, “Poster: Euclidean distance based encryption: How to embed fuzziness in biometric based encryption,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, 2014, pp. 1430–1432.
  47. F. Guo and W. Susilo, “Distance-based encryption: How to embed fuzziness in biometric-based encryption,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 2, pp. 247–257, 2015.
  48. A. N. Carey and J. Zhan, “A cancelable multi-modal biometric based encryption scheme for medical images,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, 2020, pp. 3711–3720.
  49. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, p. 6000–6010, 2017.
  50. Y. Li and M. Zhichun, “An ear template protection method,” in Proceedings of the 31st Chinese Control Conference.   IEEE, 2012, pp. 3858–3862.
  51. U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain, “Biometric cryptosystems: issues and challenges,” Proceedings of the IEEE, vol. 92, no. 6, pp. 948–960, 2004.
  52. V. E. Brindha, “Biometric template security using fuzzy vault,” in 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), 2011, pp. 384–387.
  53. C. Liu, X. Hu, Q. Zhang, J. Wei, and W. Liu, “An efficient biometric identification in cloud computing with enhanced privacy security,” IEEE Access, vol. 7, pp. 105 363–105 375, 2019.
  54. M. A. M. Hasan, F. Al Abir, M. Al Siam, and J. Shin, “Gait recognition with wearable sensors using modified residual block-based lightweight cnn,” IEEE Access, vol. 10, pp. 42 577–42 588, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.