Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Convolutional Neural Network for Image Super-resolution (2402.15704v4)

Published 24 Feb 2024 in eess.IV and cs.CV

Abstract: Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. Bigger differences in network architecture are beneficial to extract more diversified structural information to strengthen the robustness of an obtained super-resolution model. In this paper, we proposed a adaptive convolutional neural network for image super-resolution (ADSRNet). To capture more information, ADSRNet is implemented by a heterogeneous parallel network. The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers to improve performance of image super-resolution. That can strengthen adaptability of an obtained super-resolution model for different scenes. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed ADSRNet is effective to deal with image resolving. Codes are obtained at https://github.com/hellloxiaotian/ADSRNet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. K. Zhang, W. Zuo, and L. Zhang, “Deep plug-and-play super-resolution for arbitrary blur kernels,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1671–1681.
  2. X. Zhou, H. Huang, R. He, Z. Wang, J. Hu, and T. Tan, “Msra-sr: Image super-resolution transformer with multi-scale shared representation acquisition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12 665–12 676.
  3. C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.
  4. J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1646–1654.
  5. J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional network for image super-resolution,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1637–1645.
  6. Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 3147–3155.
  7. V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning (2016),” arXiv preprint arXiv:1603.07285, 2016.
  8. W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1874–1883.
  9. C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14.   Springer, 2016, pp. 391–407.
  10. B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 136–144.
  11. N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-resolution with cascading residual network,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 252–268.
  12. Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-resolution via information distillation network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 723–731.
  13. Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic convolution: Attention over convolution kernels,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 030–11 039.
  14. E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 126–135.
  15. M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity single-image super-resolution based on nonnegative neighbor embedding,” 2012.
  16. R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7.   Springer, 2012, pp. 711–730.
  17. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2.   IEEE, 2001, pp. 416–423.
  18. J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-exemplars,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 5197–5206.
  19. R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored neighborhood regression for fast super-resolution,” in Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1-5, 2014, Revised Selected Papers, Part IV 12.   Springer, 2015, pp. 111–126.
  20. D. Dai, R. Timofte, and L. Van Gool, “Jointly optimized regressors for image super-resolution,” in Computer Graphics Forum, vol. 34, no. 2.   Wiley Online Library, 2015, pp. 95–104.
  21. S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image upscaling with super-resolution forests,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3791–3799.
  22. Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for image super-resolution with sparse prior,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 370–378.
  23. X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections,” Advances in neural information processing systems, vol. 29, 2016.
  24. K. Zhang, X. Gao, D. Tao, and X. Li, “Single image super-resolution with non-local means and steering kernel regression,” IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4544–4556, 2012.
  25. Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1256–1272, 2016.
  26. Z. Lu, Z. Yu, P. Yali, L. Shigang, W. Xiaojun, L. Gang, and R. Yuan, “Fast single image super-resolution via dilated residual networks,” IEEE Access, vol. 7, pp. 109 729–109 738, 2018.
  27. Y. Shi, K. Wang, C. Chen, L. Xu, and L. Lin, “Structure-preserving image super-resolution via contextualized multitask learning,” IEEE transactions on multimedia, vol. 19, no. 12, pp. 2804–2815, 2017.
  28. H. Ren, M. El-Khamy, and J. Lee, “Image super resolution based on fusing multiple convolution neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 54–61.
  29. Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network for image restoration,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4539–4547.
  30. C. Tian, R. Zhuge, Z. Wu, Y. Xu, W. Zuo, C. Chen, and C.-W. Lin, “Lightweight image super-resolution with enhanced cnn,” Knowledge-Based Systems, vol. 205, p. 106235, 2020.
  31. J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873, 2010.
  32. J. Song, J. Xiao, C. Tian, Y. Hu, L. You, and S. Zhang, “A dual cnn for image super-resolution,” Electronics, vol. 11, no. 5, p. 757, 2022.
  33. C. Tian, Y. Zhang, W. Zuo, C.-W. Lin, D. Zhang, and Y. Yuan, “A heterogeneous group cnn for image super-resolution,” IEEE transactions on neural networks and learning systems, 2022.
  34. Y. Huang, S. Li, L. Wang, T. Tan et al., “Unfolding the alternating optimization for blind super resolution,” Advances in Neural Information Processing Systems, vol. 33, pp. 5632–5643, 2020.
  35. Z. Luo, H. Huang, L. Yu, Y. Li, H. Fan, and S. Liu, “Deep constrained least squares for blind image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 642–17 652.
  36. J. Sahambi et al., “A lightweight deep residual attention network for single image super resolution,” in 2023 National Conference on Communications (NCC).   IEEE, 2023, pp. 1–6.
  37. W. Shi, F. Tao, and Y. Wen, “Structure-aware deep networks and pixel-level generative adversarial training for single image super-resolution,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–14, 2023.
  38. C. Tian, Y. Xu, W. Zuo, C.-W. Lin, and D. Zhang, “Asymmetric cnn for image superresolution,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 6, pp. 3718–3730, 2021.
  39. C. Tian, X. Zhang, J. C.-W. Lin, W. Zuo, Y. Zhang, and C.-W. Lin, “Generative adversarial networks for image super-resolution: A survey,” arXiv preprint arXiv:2204.13620, 2022.
  40. F. Yu, X. Wang, M. Cao, G. Li, Y. Shan, and C. Dong, “Osrt: Omnidirectional image super-resolution with distortion-aware transformer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 13 283–13 292.
  41. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2472–2481.
  42. S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, and J. Yang, “Multiscale dynamic graph convolutional network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 5, pp. 3162–3177, 2019.
  43. Y. Ding, J. Feng, Y. Chong, S. Pan, and X. Sun, “Adaptive sampling toward a dynamic graph convolutional network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2021.
  44. Z. Duan, T. Zhang, X. Luo, and J. Tan, “Dckn: multi-focus image fusion via dynamic convolutional kernel network,” Signal Processing, vol. 189, p. 108282, 2021.
  45. C. Dai, Z. Guan, and M. Lin, “Single low-light image enhancer using taylor expansion and fully dynamic convolution,” Signal Processing, vol. 189, p. 108280, 2021.
  46. J. Hou, Z. Guo, Y. Wu, W. Diao, and T. Xu, “Bsnet: Dynamic hybrid gradient convolution based boundary-sensitive network for remote sensing image segmentation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–22, 2022.
  47. H. Shen, Z.-Q. Zhao, and W. Zhang, “Adaptive dynamic filtering network for image denoising,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 2, 2023, pp. 2227–2235.
  48. C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, and D. Zhang, “Multi-stage image denoising with the wavelet transform,” Pattern Recognition, vol. 134, p. 109050, 2023.
  49. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  50. F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122, 2015.
  51. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
  52. Y.-S. Xu, S.-Y. R. Tseng, Y. Tseng, H.-K. Kuo, and Y.-M. Tsai, “Unified dynamic convolutional network for super-resolution with variational degradations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 496–12 505.
  53. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  54. A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th international conference on pattern recognition.   IEEE, 2010, pp. 2366–2369.
  55. K. Jiang, Z. Wang, P. Yi, and J. Jiang, “Hierarchical dense recursive network for image super-resolution,” Pattern Recognition, vol. 107, p. 107475, 2020.
  56. M. Hu, K. Jiang, Z. Wang, X. Bai, and R. Hu, “Cycmunet+: Cycle-projected mutual learning for spatial-temporal video super-resolution,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  57. K. Jiang, Z. Wang, P. Yi, T. Lu, J. Jiang, and Z. Xiong, “Dual-path deep fusion network for face image hallucination,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 1, pp. 378–391, 2020.
  58. Z. Zha, X. Yuan, B. Wen, J. Zhou, J. Zhang, and C. Zhu, “From rank estimation to rank approximation: Rank residual constraint for image restoration,” IEEE Transactions on Image Processing, vol. 29, pp. 3254–3269, 2020.
  59. Z. Zha, X. Yuan, B. Wen, J. Zhou, and C. Zhu, “Group sparsity residual constraint with non-local priors for image restoration,” IEEE Transactions on Image Processing, vol. 29, pp. 8960–8975, 2020.
  60. W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid networks for fast and accurate super-resolution,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 624–632.
  61. W. Bae, J. Yoo, and J. Chul Ye, “Beyond deep residual learning for image restoration: Persistent homology-guided manifold simplification,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 145–153.
  62. J. Xu, M. Li, J. Fan, X. Zhao, and Z. Chang, “Self-learning super-resolution using convolutional principal component analysis and random matching,” IEEE Transactions on Multimedia, vol. 21, no. 5, pp. 1108–1121, 2018.
  63. F. Cao and B. Chen, “New architecture of deep recursive convolution networks for super-resolution,” Knowledge-Based Systems, vol. 178, pp. 98–110, 2019.
  64. S. Wang and Y. Zhang, “Deep learning for covid-19 diagnosis via chest images.”
  65. Y. Zhang, L. Deng, H. Zhu, W. Wang, Z. Ren, Q. Zhou, S. Lu, S. Sun, Z. Zhu, J. M. Gorriz et al., “Deep learning in food category recognition,” Information Fusion, p. 101859, 2023.
  66. Y.-D. Zhang, Z. Dong, S.-H. Wang, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-Mesa, J. Ramirez et al., “Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation,” Information Fusion, vol. 64, pp. 149–187, 2020.
  67. X. Zhou, Q. Yang, X. Zheng, W. Liang, I. Kevin, K. Wang, J. Ma, Y. Pan, and Q. Jin, “Personalized federation learning with model-contrastive learning for multi-modal user modeling in human-centric metaverse,” IEEE Journal on Selected Areas in Communications, 2024.
  68. X. Zhou, Q. Yang, Q. Liu, W. Liang, K. Wang, Z. Liu, J. Ma, and Q. Jin, “Spatial–temporal federated transfer learning with multi-sensor data fusion for cooperative positioning,” Information Fusion, vol. 105, p. 102182, 2024.
  69. X. Zhou, X. Zheng, X. Cui, J. Shi, W. Liang, Z. Yan, L. T. Yang, S. Shimizu, I. Kevin, and K. Wang, “Digital twin enhanced federated reinforcement learning with lightweight knowledge distillation in mobile networks,” IEEE Journal on Selected Areas in Communications, 2023.
  70. X. Zhou, X. Zheng, T. Shu, W. Liang, I. Kevin, K. Wang, L. Qi, S. Shimizu, and Q. Jin, “Information theoretic learning-enhanced dual-generative adversarial networks with causal representation for robust ood generalization,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.