Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints (2402.15639v2)

Published 23 Feb 2024 in math.OC

Abstract: In this paper we consider a nonconvex optimization problem with nonlinear equality constraints. We assume that both, the objective function and the functional constraints, are locally smooth. For solving this problem, we propose a linearized quadratic penalty method, i.e., we linearize the objective function and the functional constraints in the penalty formulation at the current iterate and add a quadratic regularization, thus yielding a subproblem that is easy to solve, and whose solution is the next iterate. Under a new adaptive regularization parameter choice, we provide convergence guarantees for the iterates of this method to an $\epsilon$ first-order optimal solution in $\mathcal{O}({\epsilon{-2.5}})$ iterations. Finally, we show that when the problem data satisfy Kurdyka-Lojasiewicz property, e.g., are semialgebraic, the whole sequence generated by the proposed algorithm converges and we derive improved local convergence rates depending on the KL parameter. We validate the theory and the performance of the proposed algorithm by numerically comparing it with some existing methods from the literature.

Summary

We haven't generated a summary for this paper yet.