Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Process tensor approaches to modeling two-dimensional spectroscopy (2402.15454v3)

Published 23 Feb 2024 in quant-ph and cond-mat.mes-hall

Abstract: Problems in the field of open quantum systems often involve an environment that strongly influences the dynamics of excited states. Here we present a numerical method to model optical spectra of non-Markovian open quantum systems. The method employs a process tensor framework to efficiently compute multi-time correlations in a numerically exact way. To demonstrate the efficacy of our method, we compare 2D electronic spectroscopy simulations produced through our method to Markovian master equation simulations in three different system-bath coupling regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. Wang, M. A. Allodi, and G. S. Engel, Quantum coherences reveal excited-state dynamics in biophysical systems, Nat. Rev. Chem. 3, 477 (2019).
  2. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  3. I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
  4. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  5. K. L. M. Lewis and J. P. Ogilvie, Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy, J. Phys. Chem. Lett. 3, 503 (2012).
  6. E. Collini, 2D electronic spectroscopic techniques for quantum technology applications, J. Phys. Chem. C 125, 13096 (2021).
  7. M. Cho, Coherent two-dimensional optical spectroscopy, Chem. Rev. 108, 1331 (2008).
  8. G. Guarnieri, A. Smirne, and B. Vacchini, Quantum regression theorem and non-Markovianity of quantum dynamics, Phys. Rev. A 90, 022110 (2014).
  9. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys. (Amsterdam) 349, 117 (2014).
  10. M. R. Jørgensen and F. A. Pollock, Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals, Phys. Rev. Lett. 123, 240602 (2019).
  11. V. Link, H.-H. Tu, and W. T. Strunz, Open quantum system dynamics from infinite tensor network contraction, arXiv:2307.01802.
  12. Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath, J. Phys. Soc. Jpn. 58, 101 (1988).
  13. Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (heom), J. Chem. Phys. 153, 020901 (2020).
  14. M. B. Oviedo, C. F. Negre, and C. G. Sánchez, Dynamical simulation of the optical response of photosynthetic pigments, Phys. Chem. Chem. Phys. 12, 6706 (2010).
  15. A. Strathearn, B. W. Lovett, and P. Kirton, Efficient real-time path integrals for non-Markovian spin-boson models, New J. Phys. 19, 093009 (2017).
  16. The tempo collaboration, OQuPy: A python 3 package to efficiently compute non-Markovian open quantum systems (2022), 10.5281/zenodo.4428316.
  17. E. Cassette, J. C. Dean, and G. D. Scholes, Two-dimensional visible spectroscopy for studying colloidal semiconductor nanocrystals, Small 12, 2234 (2016).
  18. C. L. Smallwood and S. T. Cundiff, Multidimensional coherent spectroscopy of semiconductors, Laser Photonics Rev. 12, 1800171 (2018).
  19. W. Tao, Y. Zhang, and H. Zhu, Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications, Accounts of Chemical Research 55, 345 (2022).
  20. M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165, 387 (1992).
  21. R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. of Phys. 24, 118 (1963).
  22. N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. I. theory, J. Chem. Phys. 102, 4600 (1995a).
  23. N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices. II. numerical methodology, J. Chem. Phys. 102, 4611 (1995b).
  24. R. Hartmann and W. T. Strunz, Accuracy assessment of perturbative master equations: Embracing nonpositivity, Phys. Rev. A 101, 012103 (2020).
  25. T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model, Ann. Phys. 8, 325 (1959).
  26. A. Nazir and D. P. S. McCutcheon, Modelling exciton–phonon interactions in optically driven quantum dots, J. Phys.: Condens. Matter 28, 103002 (2016).

Summary

We haven't generated a summary for this paper yet.