Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-balls and charged Q-balls in a two-scalar field theory with generalized Henon-Heiles potential (2402.15396v1)

Published 23 Feb 2024 in hep-th and nlin.PS

Abstract: We construct Q-ball solutions from a model consisting of one massive scalar field $\xi$ and one massive complex scalar field $\phi$ interacting via the cubic couplings $g_1 \xi \phi{*} \phi + g_2 \xi3$, typical of Henon-Heiles-like potentials. Although being formally simple, these couplings allow for Q-balls. In one spatial dimension, analytical solutions exist, either with vanishing or non vanishing $\phi$. In three spatial dimensions, we numerically build Q-ball solutions and investigate their behaviours when changing the relatives values of $g_1$ and $g_2$. For $g_1<g_2$, two Q-balls with the same frequency exist, while $\omega=0$ can be reached when $g_1>g_2$. We then extend the former solutions by gauging the U(1)-symmetry of $\phi$ and show that charged Q-balls exist.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Sidney R. Coleman. Q-balls. Nucl. Phys. B, 262(2):263, 1985. [Addendum: Nucl.Phys.B 269, 744 (1986)].
  2. T. D. Lee and Y. Pang. Nontopological solitons. Phys. Rept., 221:251–350, 1992.
  3. Spinning Q balls. Phys. Rev., D66:085003, 2002.
  4. Gauged q balls. Phys. Rev. D, 39:1665–1673, Mar 1989.
  5. Interacting q-balls. Nonlinearity, 21(8):1937, jul 2008.
  6. Class of scalar-field soliton solutions in three space dimensions. Phys. Rev. D, 13:2739–2761, May 1976.
  7. V. Loiko and Ya. Shnir. Q-balls in the u(1) gauged friedberg-lee-sirlin model. Physics Letters B, 797:134810, 2019.
  8. E.Ya. Nugaev. Hénon–heiles potential as a bridge between nontopological solitons of different types. Communications in Nonlinear Science and Numerical Simulation, 20(2):443–446, 2015.
  9. Review of Nontopological Solitons in Theories with U⁢(1)𝑈1U(1)italic_U ( 1 )-Symmetry. J. Exp. Theor. Phys., 130(2):301–320, 2020.
  10. The applicability of the third integral of motion: Some numerical experiments. Astron. J., 69:73, February 1964.
  11. A Collocation Solver for Mixed Order Systems of Boundary Value Problems. Math. Comput., 33(146):659–679, 1979.
  12. Calculating periodic orbits of the hénon–heiles system. Frontiers in Astronomy and Space Sciences, 9, 2023.
  13. Euaggelos E. Zotos. Classifying orbits in the classical hénon–heiles hamiltonian system. Nonlinear Dynamics, 79(3):1665–1677, 2015.
  14. Integration of a generalized Hénon–Heiles Hamiltonian. Journal of Mathematical Physics, 43(4):1906–1915, 04 2002.
  15. Stefan Wojciechowski. Separability of an integrable case of the henon-heiles system. Physics Letters A, 100(6):277–278, 1984.
  16. R Conte and M Musette. Link between solitary waves and projective riccati equations. Journal of Physics A: Mathematical and General, 25(21):5609, nov 1992.
  17. Mapping Gauged Q-Balls. Phys. Rev. D, 103(11):116004, 2021.
  18. Existence and stability of gauged nontopological solitons. Mod. Phys. Lett. A, 6:1479–1486, 1991.
  19. Q-ball stress stability criterion in U(1) gauged scalar theories. Phys. Rev. D, 106(4):045021, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com