Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum robustness of the toric code in a parallel field on the honeycomb and triangular lattice (2402.15389v3)

Published 23 Feb 2024 in cond-mat.str-el, cond-mat.stat-mech, and quant-ph

Abstract: We investigate the quantum robustness of the topological order in the toric code on the honeycomb lattice in the presence of a uniform parallel field. For a field in $z$-direction, the low-energy physics is in the flux-free sector and can be mapped to the transverse-field Ising model on the honeycomb lattice. One finds a second-order quantum phase transition in the 3D Ising$\star$ universality class for both signs of the field. The same is true for a postive field in $x$-direction where an analogue mapping in the charge-free sector yields a ferromagnetic transverse-field Ising model on the triangular lattice and the phase transition is still 3D Ising$\star$. In contrast, for negative $x$-field, the charge-free sector is mapped to the highly frustrated antiferromagnetic transverse-field Ising model on the triangular lattice which is known to host a quantum phase transition in the 3D XY$\star$ universality class. Further, the charge-free sector does not always contain the low-energy physics for negative $x$-fields and a first-order phase transition to the polarized phase in the charge-full sector takes place at larger negative field values. We quantify the location of this transition by comparing quantum Monte Carlo simulations and high-field series expansions. The full extension of the topological phase in the presence of $x$- and $z$-fields is determined by perturbative linked-cluster expansions using a full graph decomposition. Extrapolating the high-order series of the charge and the flux gap allows to estimate critical exponents of the gap closing. This analysis indicates that the topological order breaks down by critical lines of 3D Ising$\star$ and 3D XY$\star$ type with interesting potential multi-critical crossing points. All findings for the toric code on the honeycomb lattice can be transferred exactly to the toric code on the triangular lattice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces, Phys. Rev. B 41, 9377 (1990), 10.1103/PhysRevB.41.9377.
  2. X. G. Wen, Topological order in rigid states, International Journal of Modern Physics B 04, 239 (1990), 10.1142/S0217979290000139.
  3. X.-G. Wen, Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons, Oxford University Press (2004).
  4. R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983), 10.1103/PhysRevLett.50.1395.
  5. D. Tsui, H. Stormer and A. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982), 10.1103/PhysRevLett.48.1559.
  6. L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010), 10.1038/nature08917.
  7. L. Savary and L. Balents, Quantum spin liquids, Rep. Prog. Phys. 80(1), 016502 (2017), 10.1088/0034-4885/80/1/016502.
  8. Probing topological spin liquids on a programmable quantum simulator, Science 374(6572), 1242 (2021), 10.1126/science.abi8794.
  9. Prediction of toric code topological order from rydberg blockade, Physical Review X 11(3) (2021), 10.1103/physrevx.11.031005.
  10. Quantum phases of rydberg atoms on a kagome lattice, Proceedings of the National Academy of Sciences 118(4) (2021), 10.1073/pnas.2015785118.
  11. Gauge-theoretic origin of rydberg quantum spin liquids, Phys. Rev. Lett. 129, 195301 (2022), 10.1103/PhysRevLett.129.195301.
  12. Emergent glassy behavior in a kagome rydberg atom array, Physical Review Letters 130(20) (2023), 10.1103/physrevlett.130.206501.
  13. J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37(1), 1 (1977), 10.1007/BF02727953.
  14. F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144 (1982), 10.1103/PhysRevLett.48.1144.
  15. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N. Y.) 303, 2 (2003), 10.1016/s0003-4916(02)00018-0.
  16. Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008), 10.1103/RevModPhys.80.1083.
  17. F. A. Bais, B. J. Schroers and J. K. Slingerland, Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89, 181601 (2002), 10.1103/PhysRevLett.89.181601.
  18. F. Bais and C. Mathy, The breaking of quantum double symmetries by defect condensation, Annals of Physics 322(3), 552 (2007), https://doi.org/10.1016/j.aop.2006.05.010.
  19. Condensate-induced transitions between topologically ordered phases, Phys. Rev. B 79, 045316 (2009), 10.1103/PhysRevB.79.045316.
  20. F. J. Burnell, S. H. Simon and J. K. Slingerland, Condensation of achiral simple currents in topological lattice models: Hamiltonian study of topological symmetry breaking, Phys. Rev. B 84, 125434 (2011), 10.1103/PhysRevB.84.125434.
  21. F. Burnell, Anyon condensation and its applications, Annu. Rev. Condens. Matter Phys. 9(1), 307 (2018), 10.1146/annurev-conmatphys-033117-054154.
  22. Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension, Phys. Rev. Lett. 98, 070602 (2007), 10.1103/PhysRevLett.98.070602.
  23. A. Hamma and D. A. Lidar, Adiabatic preparation of topological order, Phys. Rev. Lett. 100, 030502 (2008), 10.1103/PhysRevLett.100.030502.
  24. J. Yu, S.-P. Kou and X.-G. Wen, Topological quantum phase transition in the transverse Wen-plaquette model, Eur. Phys. Lett. 84, 17004 (2008), 10.1209/0295-5075/84/17004.
  25. Low-energy effective theory of the toric code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009), 10.1103/PhysRevB.79.033109.
  26. Self-duality and bound states of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009), 10.1103/PhysRevB.80.081104.
  27. Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study, Phys. Rev. B 81, 064412 (2010), 10.1103/PhysRevB.81.064412.
  28. Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge higgs model, Phys. Rev. B 82, 085114 (2010), 10.1103/PhysRevB.82.085114.
  29. F. Wu, Y. Deng and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Phys. Rev. B 85, 195104 (2012), 10.1103/PhysRevB.85.195104.
  30. Robustness of a perturbed topological phase, Phys. Rev. Lett. 106, 107203 (2011), 10.1103/PhysRevLett.106.107203.
  31. K. P. Schmidt, Persisting topological order via geometric frustration, Phys. Rev. B 88, 035118 (2013), 10.1103/PhysRevB.88.035118.
  32. Robustness of a topological phase: Topological color code in a parallel magnetic field, Phys. Rev. B 87, 094413 (2013), 10.1103/PhysRevB.87.094413.
  33. S. C. Morampudi, C. W. von Keyserlingk and F. Pollmann, Numerical study of a transition between ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topologically ordered phases, Phys. Rev. B 90, 035117 (2014), 10.1103/PhysRevB.90.035117.
  34. Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation, Phys. Rev. B 94, 165110 (2016), 10.1103/PhysRevB.94.165110.
  35. Y. Zhang, R. G. Melko and E.-A. Kim, Machine learning ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT quantum spin liquids with quasiparticle statistics, Phys. Rev. B 96, 245119 (2017), 10.1103/PhysRevB.96.245119.
  36. Bridging perturbative expansions with tensor networks, Phys. Rev. Lett. 119, 070401 (2017), 10.1103/PhysRevLett.119.070401.
  37. Quantum critical phase transition between two topologically ordered phases in the ising toric code bilayer, Phys. Rev. B 102, 214422 (2020), 10.1103/PhysRevB.102.214422.
  38. Critical behavior of the fredenhagen-marcu order parameter at topological phase transitions (2024), 2402.00127.
  39. M. Iqbal and N. Schuch, Entanglement order parameters and critical behavior for topological phase transitions and beyond, Phys. Rev. X 11, 041014 (2021), 10.1103/PhysRevX.11.041014.
  40. Universal signatures of quantum critical points from finite-size torus spectra: A window into the operator content of higher-dimensional conformal field theories, Phys. Rev. Lett. 117, 210401 (2016), 10.1103/PhysRevLett.117.210401.
  41. C. XU, Unconventional quantum critical points, International Journal of Modern Physics B 26(18), 1230007 (2012), 10.1142/S0217979212300071, https://doi.org/10.1142/S0217979212300071.
  42. S. V. Isakov, R. G. Melko and M. B. Hastings, Universal signatures of fractionalized quantum critical points, Science 335(6065), 193 (2012), 10.1126/science.1212207, https://www.science.org/doi/pdf/10.1126/science.1212207.
  43. Classification of nematic order in 2 + 1 dimensions: Dislocation melting and o𝑜oitalic_o(2)/ZNsubscript𝑍𝑁{Z}_{N}italic_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT lattice gauge theory, Phys. Rev. B 91, 075103 (2015), 10.1103/PhysRevB.91.075103.
  44. Emergent XY* transition driven by symmetry fractionalization and anyon condensation, SciPost Phys. 14, 001 (2023), 10.21468/SciPostPhys.14.1.001.
  45. Spectroscopy of a topological phase, Phys. Rev. B 89, 045411 (2014), 10.1103/PhysRevB.89.045411.
  46. C. Knetter and G. Uhrig, Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain, EPJ B 13(2), 209 (2000), 10.1007/s100510050026.
  47. C. Knetter, K. P. Schmidt and G. S. Uhrig, The structure of operators in effective particle-conserving models, J. Phys. A: Math. Gen. 36, 7889 (2003), 10.1088/0305-4470/36/29/302.
  48. M. P. Gelfand, Series expansions for excited states of quantum lattice models, Solid State Communications 98, 11 (1996), 10.1016/0038-1098(96)00051-8.
  49. High-order convergent expansions for quantum many particle systems, Adv. Phys. 49, 93 (2000), 10.1080/000187300243390.
  50. J. Oitmaa, C. Hamer and W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models, Cambridge University Press, 10.1017/CBO9780511584398 (2006).
  51. M. Mühlhauser and K. P. Schmidt, Linked cluster expansions via hypergraph decompositions, Phys. Rev. E 105, 064110 (2022), 10.1103/PhysRevE.105.064110.
  52. M. Mühlhauser, V. Kott and K. Schmidt, Incorporating non-local anyonic statistics into a graph decomposition (2023), https://arxiv.org/abs/2401.06507.
  53. A. J. Guttmann, Asymptotic Analysis of Power-Series Expansions, In C. Domb, M. S. Green and J. L. Lebowitz, eds., Phase Transitions and Critical Phenomena, vol. 13. Academic Press, ISBN 0122203135 (1989).
  54. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 2 edn., 10.1017/CBO9780511973765 (2011).
  55. S. Biswas, G. Rakala and K. Damle, Quantum cluster algorithm for frustrated ising models in a transverse field, Phys. Rev. B 93, 235103 (2016), 10.1103/PhysRevB.93.235103.
  56. S. Biswas and K. Damle, Singular ferromagnetic susceptibility of the transverse-field ising antiferromagnet on the triangular lattice, Phys. Rev. B 97, 085114 (2018), 10.1103/PhysRevB.97.085114.
  57. R. Moessner and S. L. Sondhi, Resonating valence bond phase in the triangular lattice quantum dimer model, Phys. Rev. Lett. 86, 1881 (2001), 10.1103/PhysRevLett.86.1881.
  58. R. Moessner and S. L. Sondhi, Ising models of quantum frustration, Phys. Rev. B 63, 224401 (2001), 10.1103/PhysRevB.63.224401.
  59. S. V. Isakov and R. Moessner, Interplay of quantum and thermal fluctuations in a frustrated magnet, Physical Review B 68(10) (2003), 10.1103/physrevb.68.104409.
  60. G. H. Wannier, Antiferromagnetism. the triangular ising net, Phys. Rev. 79, 357 (1950), 10.1103/PhysRev.79.357.
  61. G. H. Wannier, Antiferromagnetism. the triangular ising net, Phys. Rev. B 7, 5017 (1973), 10.1103/PhysRevB.7.5017.
  62. A. W. Sandvik, Stochastic series expansion method for quantum ising models with arbitrary interactions, Phys. Rev. E 68, 056701 (2003), 10.1103/PhysRevE.68.056701.
  63. A. W. Sandvik and J. Kurkijärvi, Quantum monte carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991), 10.1103/PhysRevB.43.5950.
  64. A. W. Sandvik, A generalization of handscomb’s quantum monte carlo scheme-application to the 1d hubbard model, Journal of Physics A: Mathematical and General 25(13), 3667 (1992), 10.1088/0305-4470/25/13/017.
  65. Computational studies of quantum spin systems, In AIP Conference Proceedings. AIP, 10.1063/1.3518900 (2010).
  66. Quantum-critical properties of the long-range transverse-field ising model from quantum monte carlo simulations, Phys. Rev. B 103, 245135 (2021), 10.1103/PhysRevB.103.245135.
  67. A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Physics Reports 368(6), 549 (2002), 10.1016/s0370-1573(02)00219-3.
  68. Dynamics at and near conformal quantum critical points, Physical Review B 83(12) (2011), 10.1103/physrevb.83.125114.
  69. H. W. J. Blöte and Y. Deng, Cluster monte carlo simulation of the transverse ising model, Phys. Rev. E 66, 066110 (2002), 10.1103/PhysRevE.66.066110.
  70. Precision islands in the ising and o(n ) models, Journal of High Energy Physics 2016(8) (2016), 10.1007/jhep08(2016)036.
  71. H.-X. He, C. J. Hamer and J. Oitmaa, High-temperature series expansions for the (2+1)-dimensional ising model, J. Phys. A: Math. Gen. 23, 1775 (1990), 10.1088/0305-4470/23/10/018.
  72. Disorder by disorder and flat bands in the kagome transverse field ising model, Phys. Rev. B 87, 054404 (2013), 10.1103/PhysRevB.87.054404.
  73. M. Hasenbusch, Monte carlo study of an improved clock model in three dimensions, Phys. Rev. B 100, 224517 (2019), 10.1103/PhysRevB.100.224517.
  74. Carving out ope space and precise o(2) model critical exponents, Journal of High Energy Physics 2020(6) (2020), 10.1007/jhep06(2020)142.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com