Probabilistically Correct Language-based Multi-Robot Planning using Conformal Prediction (2402.15368v4)
Abstract: This paper addresses task planning problems for language-instructed robot teams. Tasks are expressed in natural language (NL), requiring the robots to apply their capabilities at various locations and semantic objects. Several recent works have addressed similar planning problems by leveraging pre-trained LLMs to design effective multi-robot plans. However, these approaches lack performance guarantees. To address this challenge, we introduce a new distributed LLM-based planner, called S-ATLAS for Safe plAnning for Teams of Language-instructed AgentS, that is capable of achieving user-defined mission success rates. This is accomplished by leveraging conformal prediction (CP), a distribution-free uncertainty quantification tool in black-box models. CP allows the proposed multi-robot planner to reason about its inherent uncertainty in a distributed fashion, enabling robots to make individual decisions when they are sufficiently certain and seek help otherwise. We show, both theoretically and empirically, that the proposed planner can achieve user-specified task success rates, assuming successful plan execution, while minimizing the overall number of help requests. We provide comparative experiments against related works showing that our method is significantly more computational efficient and achieves lower help rates. The advantage of our algorithm over baselines becomes more pronounced with increasing robot team size.
- B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas, “Anytime planning for decentralized multirobot active information gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1025–1032, 2018.
- Y. Kantaros and M. M. Zavlanos, “Distributed communication-aware coverage control by mobile sensor networks,” Automatica, vol. 63, pp. 209–220, 2016.
- W. Gosrich, S. Mayya, R. Li, J. Paulos, M. Yim, A. Ribeiro, and V. Kumar, “Coverage control in multi-robot systems via graph neural networks,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 8787–8793.
- K. Elimelech, L. E. Kavraki, and M. Y. Vardi, “Efficient task planning using abstract skills and dynamic road map matching,” in The International Symposium of Robotics Research. Springer, 2022, pp. 487–503.
- Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems,” The International Journal of Robotics Research, vol. 39, no. 7, pp. 812–836, 2020.
- M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment and planning of trajectories for multiple robots,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.
- P. Pianpak, T. C. Son, P. O. Toups Dugas, and W. Yeoh, “A distributed solver for multi-agent path finding problems,” in Proceedings of the First International Conference on Distributed Artificial Intelligence, 2019, pp. 1–7.
- A. Fang and H. Kress-Gazit, “Automated task updates of temporal logic specifications for heterogeneous robots,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 4363–4369.
- V. Vasilopoulos and D. E. Koditschek, “Reactive navigation in partially known non-convex environments,” in International Workshop on the Algorithmic Foundations of Robotics. Springer, 2018, pp. 406–421.
- S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
- L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
- C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and motion planning,” Annual review of control, robotics, and autonomous systems, vol. 4, pp. 265–293, 2021.
- L. Antonyshyn, J. Silveira, S. Givigi, and J. Marshall, “Multiple mobile robot task and motion planning: A survey,” ACM Computing Surveys, vol. 55, no. 10, pp. 1–35, 2023.
- J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
- D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.
- I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans using large language models,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 11 523–11 530.
- J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 9493–9500.
- D. Shah, B. Osiński, S. Levine et al., “Lm-nav: Robotic navigation with large pre-trained models of language, vision, and action,” in Conference on Robot Learning. PMLR, 2023, pp. 492–504.
- Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating natural language to planning goals with large-language models,” arXiv preprint arXiv:2302.05128, 2023.
- Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion planning with large language models for object rearrangement,” arXiv preprint arXiv:2303.06247, 2023.
- B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone, “Llm+ p: Empowering large language models with optimal planning proficiency,” arXiv preprint arXiv:2304.11477, 2023.
- J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and T. Funkhouser, “Tidybot: Personalized robot assistance with large language models,” arXiv preprint arXiv:2305.05658, 2023.
- A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani et al., “Socratic models: Composing zero-shot multimodal reasoning with language,” arXiv preprint arXiv:2204.00598, 2022.
- S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor, “Language-conditioned imitation learning for robot manipulation tasks,” Advances in Neural Information Processing Systems, vol. 33, pp. 13 139–13 150, 2020.
- S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang, E. Akyürek, A. Anandkumar et al., “Pre-trained language models for interactive decision-making,” Advances in Neural Information Processing Systems, vol. 35, pp. 31 199–31 212, 2022.
- W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue: Embodied reasoning through planning with language models,” arXiv preprint arXiv:2207.05608, 2022.
- J. Ruan, Y. Chen, B. Zhang, Z. Xu, T. Bao, G. Du, S. Shi, H. Mao, X. Zeng, and R. Zhao, “Tptu: Task planning and tool usage of large language model-based ai agents,” arXiv preprint arXiv:2308.03427, 2023.
- M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can, not as i say: Grounding language in robotic affordances,” arXiv preprint arXiv:2204.01691, 2022.
- X. Luo, S. Xu, and C. Liu, “Obtaining hierarchy from human instructions: an llms-based approach,” in CoRL 2023 Workshop on Learning Effective Abstractions for Planning (LEAP), 2023.
- F. Joublin, A. Ceravola, P. Smirnov, F. Ocker, J. Deigmoeller, A. Belardinelli, C. Wang, S. Hasler, D. Tanneberg, and M. Gienger, “Copal: Corrective planning of robot actions with large language models,” arXiv preprint arXiv:2310.07263, 2023.
- Z. Dai, A. Asgharivaskasi, T. Duong, S. Lin, M.-E. Tzes, G. Pappas, and N. Atanasov, “Optimal scene graph planning with large language model guidance,” arXiv preprint arXiv:2309.09182, 2023.
- Z. Mandi, S. Jain, and S. Song, “Roco: Dialectic multi-robot collaboration with large language models,” arXiv preprint arXiv:2307.04738, 2023.
- H. Zhang, W. Du, J. Shan, Q. Zhou, Y. Du, J. B. Tenenbaum, T. Shu, and C. Gan, “Building cooperative embodied agents modularly with large language models,” arXiv preprint arXiv:2307.02485, 2023.
- Y. Talebirad and A. Nadiri, “Multi-agent collaboration: Harnessing the power of intelligent llm agents,” arXiv preprint arXiv:2306.03314, 2023.
- Z. Liu, W. Yao, J. Zhang, L. Xue, S. Heinecke, R. Murthy, Y. Feng, Z. Chen, J. C. Niebles, D. Arpit et al., “Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents,” arXiv preprint arXiv:2308.05960, 2023.
- S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou et al., “Metagpt: Meta programming for multi-agent collaborative framework,” arXiv preprint arXiv:2308.00352, 2023.
- Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan, “Scalable multi-robot collaboration with large language models: Centralized or decentralized systems?” arXiv preprint arXiv:2309.15943, 2023.
- B. Zhang, H. Mao, J. Ruan, Y. Wen, Y. Li, S. Zhang, Z. Xu, D. Li, Z. Li, R. Zhao et al., “Controlling large language model-based agents for large-scale decision-making: An actor-critic approach,” arXiv preprint arXiv:2311.13884, 2023.
- W. Chen, S. Koenig, and B. Dilkina, “Why solving multi-agent path finding with large language model has not succeeded yet,” arXiv preprint arXiv:2401.03630, 2024.
- S. S. Kannan, V. L. Venkatesh, and B.-C. Min, “Smart-llm: Smart multi-agent robot task planning using large language models,” arXiv preprint arXiv:2309.10062, 2023.
- V. Pallagani, K. Roy, B. Muppasani, F. Fabiano, A. Loreggia, K. Murugesan, B. Srivastava, F. Rossi, L. Horesh, and A. Sheth, “On the prospects of incorporating large language models (llms) in automated planning and scheduling (aps),” arXiv preprint arXiv:2401.02500, 2024.
- F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language models for robotics: A survey,” arXiv preprint arXiv:2311.07226, 2023.
- A. N. Angelopoulos, S. Bates et al., “Conformal prediction: A gentle introduction,” Foundations and Trends® in Machine Learning, vol. 16, no. 4, pp. 494–591, 2023.
- G. Shafer and V. Vovk, “A tutorial on conformal prediction.” Journal of Machine Learning Research, vol. 9, no. 3, 2008.
- A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley, Z. Xu, D. Sadigh, A. Zeng, and A. Majumdar, “Robots that ask for help: Uncertainty alignment for large language model planners,” 2023.
- B. Kumar, C. Lu, G. Gupta, A. Palepu, D. Bellamy, R. Raskar, and A. Beam, “Conformal prediction with large language models for multi-choice question answering,” arXiv preprint arXiv:2305.18404, 2023.
- J. Wang, J. Tong, K. Tan, Y. Vorobeychik, and Y. Kantaros, “Conformal temporal logic planning using large language models: Knowing when to do what and when to ask for help,” arXiv preprint arXiv:2309.10092, 2023.
- Y. Xiao and W. Y. Wang, “Quantifying uncertainties in natural language processing tasks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 7322–7329.
- K. Zhou, D. Jurafsky, and T. Hashimoto, “Navigating the grey area: Expressions of overconfidence and uncertainty in language models,” arXiv preprint arXiv:2302.13439, 2023.
- Y. Xiao, P. P. Liang, U. Bhatt, W. Neiswanger, R. Salakhutdinov, and L.-P. Morency, “Uncertainty quantification with pre-trained language models: A large-scale empirical analysis,” arXiv preprint arXiv:2210.04714, 2022.
- A. Angelopoulos, S. Bates, J. Malik, and M. I. Jordan, “Uncertainty sets for image classifiers using conformal prediction,” arXiv preprint arXiv:2009.14193, 2020.
- H. Yang and M. Pavone, “Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric uncertainty propagation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8947–8958.
- Z. Mao, C. Sobolewski, and I. Ruchkin, “How safe am i given what i see? calibrated prediction of safety chances for image-controlled autonomy,” arXiv preprint arXiv:2308.12252, 2023.
- A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and J. W. Burdick, “Adaptive conformal prediction for motion planning among dynamic agents,” in Learning for Dynamics and Control Conference. PMLR, 2023, pp. 300–314.
- J. Sun, Y. Jiang, J. Qiu, P. T. Nobel, M. Kochenderfer, and M. Schwager, “Conformal prediction for uncertainty-aware planning with diffusion dynamics model,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023.
- M. Cleaveland, I. Lee, G. J. Pappas, and L. Lindemann, “Conformal prediction regions for time series using linear complementarity programming,” arXiv preprint arXiv:2304.01075, 2023.
- J. Lekeufack, A. A. Angelopoulos, A. Bajcsy, M. I. Jordan, and J. Malik, “Conformal decision theory: Safe autonomous decisions from imperfect predictions,” arXiv preprint arXiv:2310.05921, 2023.
- V. Manokhin, “Awesome conformal prediction,” Apr. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.6467205
- N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized active information acquisition: Theory and application to multi-robot slam,” in 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 4775–4782.
- A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using multiple robots,” Journal of Artificial Intelligence Research, vol. 34, pp. 707–755, 2009.
- P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of finite ltl specifications for efficient multi-agent planning,” in Distributed Autonomous Robotic Systems. Springer, 2018, pp. 253–267.
- V. Vovk, “Conditional validity of inductive conformal predictors,” in Asian conference on machine learning. PMLR, 2012, pp. 475–490.
- M. Sadinle, J. Lei, and L. Wasserman, “Least ambiguous set-valued classifiers with bounded error levels,” Journal of the American Statistical Association, vol. 114, no. 525, pp. 223–234, 2019.
- E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani, D. Gordon, Y. Zhu et al., “Ai2-thor: An interactive 3d environment for visual ai,” arXiv preprint arXiv:1712.05474, 2017.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
- Jun Wang (990 papers)
- Guocheng He (1 paper)
- Yiannis Kantaros (39 papers)