Portable acceleration of CMS computing workflows with coprocessors as a service (2402.15366v2)
Abstract: Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several ML inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
- L. Evans and P. Bryant, “LHC machine”, JINST 3 (2008) S08001, 10.1088/1748-0221/3/08/S08001.
- ATLAS Collaboration, “The ATLAS experiment at the CERN Large Hadron Collider”, JINST 3 (2008) S08003, 10.1088/1748-0221/3/08/S08003.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- CMS Collaboration, “Observation of a new boson at a mass of 125\GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- CMS Collaboration, “Observation of a new boson with mass near 125\GeV in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8\TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
- CMS Collaboration, “Search for supersymmetry in proton-proton collisions at 13\TeVin final states with jets and missing transverse momentum”, JHEP 10 (2019) 244, 10.1007/JHEP10(2019)244, arXiv:1908.04722.
- CMS Collaboration, “Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, Eur. Phys. J. C 81 (2021) 970, 10.1140/epjc/s10052-021-09721-5, arXiv:2107.10892.
- CMS Collaboration, “Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 05 (2022) 014, 10.1007/JHEP05(2022)014, arXiv:2201.04206.
- CMS Collaboration, “Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 04 (2021) 123, 10.1007/JHEP04(2021)123, arXiv:2012.08600.
- ATLAS Collaboration, “Search for squarks and gluinos in final states with hadronically decaying \PGt\PGt\PGt-leptons, jets, and missing transverse momentum using \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Phys. Rev. D 99 (2019) 012009, 10.1103/PhysRevD.99.012009, arXiv:1808.06358.
- ATLAS Collaboration, “Search for top squarks in events with a Higgs or \PZboson using 139\fbinvof \Pp\Pp\Pp\Pp\Pp\Pp collision data at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Eur. Phys. J. C 80 (2020) 1080, 10.1140/epjc/s10052-020-08469-8, arXiv:2006.05880.
- ATLAS Collaboration, “Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Phys. Rev. D 104 (2021) 112010, 10.1103/PhysRevD.104.112010, arXiv:2108.07586.
- ATLAS Collaboration, “Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the \PW\PW\PW-boson mass in s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 \Pp\Pp\Pp\Pp\Pp\Pp collisions with the ATLAS detector”, JHEP 06 (2023) 031, 10.1007/JHEP06(2023)031, arXiv:2209.13935.
- ATLAS Collaboration, “Search for new phenomena in events with an energetic jet and missing transverse momentum in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Phys. Rev. D 103 (2021) 112006, 10.1103/PhysRevD.103.112006, arXiv:2102.10874.
- CMS Collaboration, “Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 11 (2021) 153, 10.1007/jhep11(2021)153, arXiv:2107.13021.
- ATLAS Collaboration, “Search for new resonances in mass distributions of jet pairs using 139\fbinvof \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, JHEP 03 (2020) 145, 10.1007/jhep03(2020)145, arXiv:1910.08447.
- ATLAS Collaboration, “Search for high-mass dilepton resonances using 139\fbinvof \Pp\Pp\Pp\Pp\Pp\Pp collision data collected at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, Phys. Lett. B 796 (2019) 68, 10.1016/j.physletb.2019.07.016, arXiv:1903.06248.
- CMS Collaboration, “Search for narrow and broad dijet resonances in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 and constraints on dark matter mediators and other new particles”, JHEP 08 (2018) 130, 10.1007/jhep08(2018)130, arXiv:1806.00843.
- CMS Collaboration, “Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 05 (2020) 033, 10.1007/jhep05(2020)033, arXiv:1911.03947.
- CMS Collaboration, “Search for resonant and nonresonant new phenomena in high-mass dilepton final states at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 07 (2021) 208, 10.1007/jhep07(2021)208, arXiv:2103.02708.
- O. Aberle et al., “High-Luminosity Large Hadron Collider (HL-LHC): Technical design report”, CERN Yellow Rep. Monogr. 10 (2020) 10.23731/CYRM-2020-0010.
- O. Brüning and L. Rossi, eds., “The High Luminosity Large Hadron Collider: the new machine for illuminating the mysteries of universe”, volume 24. World Scientific, 2015. 10.1142/9581, ISBN 978-981-4675-46-8, 978-981-4678-14-8.
- CMS Collaboration, “The Phase-2 upgrade of the CMS level-1 trigger”, CMS Technical Design Report CERN-LHCC-2020-004, CMS-TDR-021, 2020.
- ATLAS Collaboration, “Technical design report for the Phase-II upgrade of the ATLAS TDAQ system”, ATLAS Technical Design Report CERN-LHCC-2017-020, ATLAS-TDR-029, 2017. 10.17181/CERN.2LBB.4IAL.
- A. Ryd and L. Skinnari, “Tracking triggers for the HL-LHC”, Ann. Rev. Nucl. Part. Sci. 70 (2020) 171, 10.1146/annurev-nucl-020420-093547, arXiv:2010.13557.
- ATLAS Collaboration, “Operation of the ATLAS trigger system in Run 2”, JINST 15 (2020) P10004, 10.1088/1748-0221/15/10/P10004, arXiv:2007.12539.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “The Phase-2 upgrade of the CMS data acquisition and high level trigger”, CMS Technical Design Report CERN-LHCC-2021-007, CMS-TDR-022, 2021.
- CMS Offline Software and Computing Group, “CMS Phase-2 computing model: Update document”, CMS Note CMS-NOTE-2022-008, 2022.
- ATLAS Collaboration, “ATLAS software and computing HL-LHC roadmap”, LHCC Public Document CERN-LHCC-2022-005, LHCC-G-182, 2022.
- R. H. Dennard et al., “Design of ion-implanted MOSFET’s with very small physical dimensions”, IEEE J. Solid-State Circuits 9 (1974) 256, 10.1109/JSSC.1974.1050511.
- Graphcore, “Intelligence processing unit”. https://www.graphcore.ai/products/ipu. Accessed: 2023-11-08.
- Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the Graphcore IPU architecture via microbenchmarking”, 2019. arXiv:1912.03413.
- D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and its application to LHC physics”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161, 10.1146/annurev-nucl-101917-021019, arXiv:1806.11484.
- K. Albertsson et al., “Machine learning in high energy physics community white paper”, J. Phys. Conf. Ser. 1085 (2018) 022008, 10.1088/1742-6596/1085/2/022008, arXiv:1807.02876.
- D. Bourilkov, “Machine and deep learning applications in particle physics”, Int. J. Mod. Phys. A 34 (2020) 1930019, 10.1142/S0217751X19300199, arXiv:1912.08245.
- A. J. Larkoski, I. Moult, and B. Nachman, “Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning”, Phys. Rept. 841 (2020) 1, 10.1016/j.physrep.2019.11.001, arXiv:1709.04464.
- Feickert, Matthew and Nachman, Benjamin, “A living review of machine learning for particle physics”, 2021. arXiv:2102.02770.
- P. Harris et al., “Physics community needs, tools, and resources for machine learning”, in Proc. 2021 US Community Study on the Future of Particle Physics. 2022. arXiv:2203.16255.
- S. Farrell et al., “Novel deep learning methods for track reconstruction”, in 4th International Workshop Connecting The Dots 2018. 2018. arXiv:1810.06111.
- S. Amrouche et al., “The Tracking Machine Learning challenge: Accuracy phase”, ch. 9, p. 231. Springer Cham, 4, 2019. arXiv:1904.06778. 10.1007/978-3-030-29135-8_9.
- X. Ju et al., “Performance of a geometric deep learning pipeline for HL-LHC particle tracking”, Eur. Phys. J. C 81 (2021) 876, 10.1140/epjc/s10052-021-09675-8, arXiv:2103.06995.
- G. DeZoort et al., “Charged particle tracking via edge-classifying interaction networks”, Comput. Softw. Big Sci. 5 (2021) 26, 10.1007/s41781-021-00073-z, arXiv:2103.16701.
- S. R. Qasim, J. Kieseler, Y. Iiyama, and M. Pierini, “Learning representations of irregular particle-detector geometry with distance-weighted graph networks”, Eur. Phys. J. C 79 (2019) 608, 10.1140/epjc/s10052-019-7113-9, arXiv:1902.07987.
- J. Kieseler, “Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data”, Eur. Phys. J. C 80 (2020) 886, 10.1140/epjc/s10052-020-08461-2, arXiv:2002.03605.
- CMS Collaboration, “GNN-based end-to-end reconstruction in the CMS Phase 2 high-granularity calorimeter”, J. Phys. Conf. Ser. 2438 (2023) 012090, 10.1088/1742-6596/2438/1/012090, arXiv:2203.01189.
- J. Pata et al., “MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks”, Eur. Phys. J. C 81 (2021) 381, 10.1140/epjc/s10052-021-09158-w, arXiv:2101.08578.
- CMS Collaboration, “Machine learning for particle flow reconstruction at CMS”, J. Phys. Conf. Ser. 2438 (2023) 012100, 10.1088/1742-6596/2438/1/012100, arXiv:2203.00330.
- F. Mokhtar et al., “Progress towards an improved particle flow algorithm at CMS with machine learning”, in Proc. 21st Intern. Workshop on Advanced Computing and Analysis Techniques in Physics Research: AI meets Reality. 2023. arXiv:2303.17657.
- F. A. Di Bello et al., “Reconstructing particles in jets using set transformer and hypergraph prediction networks”, Eur. Phys. J. C 83 (2023) 596, 10.1140/epjc/s10052-023-11677-7, arXiv:2212.01328.
- J. Pata et al., “Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors”, 2023. arXiv:2309.06782.
- E. A. Moreno et al., “JEDI-net: a jet identification algorithm based on interaction networks”, Eur. Phys. J. C 80 (2020) 58, 10.1140/epjc/s10052-020-7608-4, arXiv:1908.05318.
- H. Qu and L. Gouskos, “ParticleNet: Jet tagging via particle clouds”, Phys. Rev. D 101 (2020) 056019, 10.1103/PhysRevD.101.056019, arXiv:1902.08570.
- E. A. Moreno et al., “Interaction networks for the identification of boosted \PH→\bbbar→\PH\bbbar\PH\to\bbbar→ decays”, Phys. Rev. D 102 (2020) 012010, 10.1103/PhysRevD.102.012010, arXiv:1909.12285.
- E. Bols et al., “Jet flavour classification using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
- CMS Collaboration, “Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques”, JINST 15 (2020) P06005, 10.1088/1748-0221/15/06/P06005, arXiv:2004.08262.
- H. Qu, C. Li, and S. Qian, “Particle transformer for jet tagging”, in Proc. 39th Intern. Conf. on Machine Learning, K. Chaudhuri et al., eds., volume 162, p. 18281. 2022. arXiv:2202.03772.
- CMS Collaboration, “Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, 2023. arXiv:2310.03844. Submitted to JINST.
- J. Duarte et al., “FPGA-accelerated machine learning inference as a service for particle physics computing”, Comput. Softw. Big Sci. 3 (2019) 13, 10.1007/s41781-019-0027-2, arXiv:1904.08986.
- D. Rankin et al., “FPGAs-as-a-service toolkit (FaaST)”, in Proc. 2020 IEEE/ACM Intern. Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC). IEEE, 2020. 10.1109/h2rc51942.2020.00010.
- J. Krupa et al., “GPU coprocessors as a service for deep learning inference in high energy physics”, Mach. Learn. Sci. Tech. 2 (2021) 035005, 10.1088/2632-2153/abec21, arXiv:2007.10359.
- M. Wang et al., “GPU-accelerated machine learning inference as a service for computing in neutrino experiments”, Front. Big Data 3 (2021) 604083, 10.3389/fdata.2020.604083, arXiv:2009.04509.
- ALICE Collaboration, “Real-time data processing in the ALICE high level trigger at the LHC”, Comput. Phys. Commun. 242 (2019) 25, 10.1016/j.cpc.2019.04.011, arXiv:1812.08036.
- R. Aaij et al., “Allen: A high level trigger on GPUs for LHCb”, Comput. Softw. Big Sci. 4 (2020) 7, 10.1007/s41781-020-00039-7, arXiv:1912.09161.
- LHCb Collaboration, “The LHCb upgrade I”, 2023. arXiv:2305.10515.
- A. Bocci et al., “Heterogeneous reconstruction of tracks and primary vertices with the CMS pixel tracker”, Front. Big Data 3 (2020) 601728, 10.3389/fdata.2020.601728, arXiv:2008.13461.
- D. Vom Bruch, “Real-time data processing with GPUs in high energy physics”, JINST 15 (2020) C06010, 10.1088/1748-0221/15/06/C06010, arXiv:2003.11491.
- CMS Collaboration, “Mini-AOD: A new analysis data format for CMS”, J. Phys. Conf. Ser. 664 (2015) 7, 10.1088/1742-6596/664/7/072052, arXiv:1702.04685.
- CMS Collaboration, “CMS physics: Technical design report volume 1: Detector performance and software”, CMS Technical Design Report CERN-LHCC-2006-001, CMS-TDR-8-1, 2006.
- CMS Collaboration, “CMSSW on Github”. Accessed: 2023-11-08. http://cms-sw.github.io/.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
- CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- oneTBB, “oneAPI Threading Building Blocks”. https://github.com/oneapi-src/oneTBB. Accessed: 2023-11-08.
- A. Bocci et al., “Bringing heterogeneity to the CMS software framework”, Eur. Phys. J. Web Conf. 245 (2020) 05009, 10.1051/epjconf/202024505009, arXiv:2004.04334.
- CMS Collaboration, “A further reduction in CMS event data for analysis: the NANOAOD format”, Eur. Phys. J. Web Conf. 214 (2019) 06021, 10.1051/epjconf/201921406021.
- CMS Collaboration, “Extraction and validation of a new set of CMS \PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- CMS Collaboration, “Pileup mitigation at CMS in 13\TeVdata”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/P09018, arXiv:2003.00503.
- CMS Collaboration, “NANOAOD: A new compact event data format in CMS”, Eur. Phys. J. Web Conf. 245 (2020) 06002, 10.1051/epjconf/202024506002.
- NVIDIA, “NVIDIA Triton Inference Server”. https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html. Accessed: 2023-11-08.
- gRPC, “gRPC – A high performance, open source universal RPC framework”. https://grpc.io/. Accessed: 2023-11-08.
- Kubernetes, “Kubernetes documentation”. Accessed: 2023-11-08. https://kubernetes.io/docs/home/.
- K. Pedro et al., “SonicCore”. https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore. Accessed: 2023-11-08.
- K. Pedro et al., “SonicTriton”. https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton. Accessed: 2023-11-08.
- K. Pedro, “SonicCMS”. https://github.com/fastmachinelearning/SonicCMS. Accessed: 2023-11-08.
- A. M. Caulfield et al., “A cloud-scale acceleration architecture”, in Proc. 2016 49th Annual IEEE/ACM Intern. Symp. on Microarchitecture (MICRO), p. 1. 2016. 10.1109/MICRO.2016.7783710.
- V. Kuznetsov, “vkuznet/TFaaS: First public version”, 2018. 10.5281/zenodo.1308049.
- V. Kuznetsov, L. Giommi, and D. Bonacorsi, “MLaaS4HEP: Machine learning as a service for HEP”, Comput. Softw. Big Sci. 5 (2021) 17, 10.1007/s41781-021-00061-3, arXiv:2007.14781.
- KServe, “KServe documentation website”. https://kserve.github.io/website/. Accessed: 2023-11-08.
- NVIDIA, “NVIDIA Triton Inference Server README (release 22.08)”. https://github.com/triton-inference-server/server/blob/r22.08/README.md#documentation. Accessed: 2023-11-08.
- A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library”, in Advances in Neural Information Processing Systems 32, H. Wallach et al., eds., p. 8024. Curran Associates, Inc., 2019. arXiv:1912.01703.
- NVIDIA, “NVIDIA TensorRT”. https://developer.nvidia.com/tensorrt. Accessed: 2023-11-08.
- ONNX, “Open Neural Network Exchange (ONNX)”. https://github.com/onnx/onnx. Accessed: 2023-11-08.
- M. Abadi et al., “TensorFlow: A system for large-scale machine learning”, 2016. arXiv:1605.08695.
- T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2016. arXiv:1603.02754. 10.1145/2939672.2939785.
- NVIDIA, “NVIDIA Triton Inference Server Model Analyzer”. https://github.com/triton-inference-server/model_analyzer. Accessed: 2023-11-08.
- P. Buncic et al., “CernVM – a virtual software appliance for LHC applications”, J. Phys. Conf. Ser. 219 (2010) 042003, 10.1088/1742-6596/219/4/042003.
- S. D. Guida et al., “The CMS condition database system”, J. Phys. Conf. Ser. 664 (2015) 042024, 10.1088/1742-6596/664/4/042024.
- L. Bauerdick et al., “Using Xrootd to federate regional storage”, J. Phys. Conf. Ser. 396 (2012) 042009, 10.1088/1742-6596/396/4/042009.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- CMSSW, “ParticleNet producer in CMSSW”. https://github.com/cms-sw/cmssw/blob/CMSSW_13_0_0/RecoBTag/ONNXRuntime/plugins/BoostedJetONNXJetTagsProducer.cc. Accessed: 2023-11-08.
- CMSSW, “ParticleNet SONIC producer in CMSSW”. https://github.com/cms-sw/cmssw/blob/CMSSW_13_0_0/RecoBTag/ONNXRuntime/plugins/ParticleNetSonicJetTagsProducer.cc. Accessed: 2023-11-08.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Performance of the ParticleNet tagger on small and large-radius jets at high level trigger in Run 3”, CMS Detector Performance Note CMS-DP-2023-021, 2023.
- CMS Collaboration, “Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques”, CMS Detector Performance Note CMS-DP-2020-002, 2020.
- CMS Collaboration, “Mass regression of highly-boosted jets using graph neural networks”, CMS Detector Performance Note CMS-DP-2021-017, 2021.
- Y. Feng, “A new deep-neural-network-based missing transverse momentum estimator, and its application to \PW recoil”. PhD thesis, University of Maryland, College Park, 2020. 10.13016/e6ze-zycc.
- CMS Collaboration, “Identification of hadronic tau lepton decays using a deep neural network”, JINST 17 (2022) P07023, 10.1088/1748-0221/17/07/P07023, arXiv:2201.08458.
- NVIDIA Corporation, “NVIDIA T4 70W low profile PCIe GPU accelerator”. NVIDIA Corporation, Santa Clara, 2020.
- B. Holzman et al., “HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation”, Comput. Softw. Big Sci. 1 (2017) 1, 10.1007/s41781-017-0001-9, arXiv:1710.00100.
- Intel Corporation, “Intel 64 and IA-32 architectures software developer’s manual”. Intel Corporation, Santa Clara, 2023.
- SchedMD, “Slurm workload manager”. https://slurm.schedmd.com/documentation.html. Accessed: 2023-11-08.
- Advanced Micro Devices, Inc., “AMD EPYC 7002 series processors power electronic health record solutions”. Advanced Micro Devices, Inc., Santa Clara, 2020.