Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity (2402.15333v1)

Published 23 Feb 2024 in quant-ph and cs.AI

Abstract: Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to use qubits efficiently and mitigate both present limitations and future complexities. To address this, existing quantum applications attempt to integrate classical and quantum systems in a hybrid framework. In this study, we concentrate on quantum deep learning and introduce a collaborative classical-quantum architecture called co-TenQu. The classical component employs a tensor network for compression and feature extraction, enabling higher-dimensional data to be encoded onto logical quantum circuits with limited qubits. On the quantum side, we propose a quantum-state-fidelity-based evaluation function to iteratively train the network through a feedback loop between the two sides. co-TenQu has been implemented and evaluated with both simulators and the IBM-Q platform. Compared to state-of-the-art approaches, co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting. Additionally, it outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep learning,” 2020. [Online]. Available: https://arxiv.org/abs/2007.05558
  2. I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental implementation of fast quantum searching,” Phys. Rev. Lett., vol. 80, pp. 3408–3411, Apr 1998. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
  3. https://quantum-computing.ibm.com/.
  4. F. Arute, K. Arya, R. Babbush, D. Bacon et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505–510, 2019. [Online]. Available: https://www.nature.com/articles/s41586-019-1666-5
  5. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, oct 1997. [Online]. Available: https://doi.org/10.1137%2Fs0097539795293172
  6. L. K. Grover, “A fast quantum mechanical algorithm for database search,” 1996. [Online]. Available: https://arxiv.org/abs/quant-ph/9605043
  7. S. Garg and G. Ramakrishnan, “Advances in quantum deep learning: An overview,” 2020. [Online]. Available: https://arxiv.org/abs/2005.04316
  8. K. Beer, D. Bondarenko, T. Farrelly, R. S. T. J. Osborne, D. Scheiermann, , and R. Wolf, “Training deep quantum neural networks,” Nature communications,vol. 11, no. 1, pp. 1–6, 2019.
  9. I. Kerenidis, A. Luongo, and A. Prakash, “Quantum expectation-maximization for gaussian mixture models,” 2019. [Online]. Available: https://arxiv.org/abs/1908.06657
  10. T. Li, S. Chakrabarti, and X. Wu, “Sublinear quantum algorithms for training linear and kernel-based classifiers,” 2019. [Online]. Available: https://arxiv.org/abs/1904.02276
  11. C. Ding, T.-Y. Bao, and H.-L. Huang, “Quantum-inspired support vector machine,” 2019. [Online]. Available: https://arxiv.org/abs/1906.08902
  12. A. Panahi, S. Saeedi, and T. Arodz, “word2ket: Space-efficient word embeddings inspired by quantum entanglement,” 2019. [Online]. Available: https://arxiv.org/abs/1911.04975
  13. P. Kaye, R. Laflamme, and M. M. al., “An introduction to quantum computing,” Oxford university press, 2007.
  14. S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, S. Xu, and C. Ding, “Quclassi: A hybrid deep neural network architecture based on quantum state fidelity,” Proceedings of Machine Learning and Systems, vol. 4, 2022.
  15. S. A. Stein, R. L’Abbate, W. Mu, Y. Liu, B. Baheri, Y. Mao, G. Qiang, A. Li, and B. Fang, “A hybrid system for learning classical data in quantum states,” in 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC).   IEEE, 2021, pp. 1–7.
  16. S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, B. Fang, and S. Xu, “Qugan: A quantum state fidelity based generative adversarial network,” in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).   IEEE, 2021, pp. 71–81.
  17. S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, and Y.-J. Kao, “An end-to-end trainable hybrid classical-quantum classifier,” Machine Learning: Science and Technology, vol. 2, no. 4, p. 045021, 2021.
  18. T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural network for classical data classification,” Quantum Machine Intelligence, vol. 4, no. 1, p. 3, 2022.
  19. E. H. Houssein, Z. Abohashima, M. Elhoseny, and W. M. Mohamed, “Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision,” Expert Systems with Applications, p. 116512, 2022.
  20. F. V. Massoli, L. Vadicamo, G. Amato, and F. Falchi, “A leap among quantum computing and quantum neural networks: A survey,” ACM Computing Surveys, vol. 55, no. 5, pp. 1–37, 2022.
  21. M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in quantum machine learning,” Nature Computational Science, vol. 2, no. 9, pp. 567–576, 2022.
  22. S. Ruan, Y. Wang, W. Jiang, Y. Mao, and Q. Guan, “Vacsen: A visualization approach for noise awareness in quantum computing,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 462–472, 2022.
  23. A. D’Onofrio, A. Hossain, L. Santana, N. Machlovi, S. Stein, J. Liu, A. Li, and Y. Mao, “Distributed quantum learning with co-management in a multi-tenant quantum system,” in 2023 IEEE International Conference on Big Data (BigData).   IEEE, 2023, pp. 221–228.
  24. S. Ruan, Q. Guan, P. Griffin, Y. Mao, and Y. Wang, “Quantumeyes: Towards better interpretability of quantum circuits,” IEEE Transactions on Visualization and Computer Graphics, 2023.
  25. S. Ruan, R. Yuan, Q. Guan, Y. Lin, Y. Mao, W. Jiang, Z. Wang, W. Xu, and Y. Wang, “Venus: A geometrical representation for quantum state visualization,” in Computer Graphics Forum, vol. 42, no. 3.   Wiley Online Library, 2023, pp. 247–258.
  26. K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, D. Scheiermann, and R. Wolf, “Training deep quantum neural networks,” Nature communications, vol. 11, no. 1, p. 808, 2020.
  27. A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, “The power of quantum neural networks,” Nature Computational Science, vol. 1, no. 6, pp. 403–409, 2021.
  28. L. Xue, L. Cheng, Y. Li, and Y. Mao, “Quantum machine learning for electricity theft detection: an initial investigation,” in 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics).   IEEE, 2021, pp. 204–208.
  29. Z. Liang, H. Wang, J. Cheng, Y. Ding, H. Ren, Z. Gao, Z. Hu, D. S. Boning, X. Qian, S. Han et al., “Variational quantum pulse learning,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   IEEE, 2022, pp. 556–565.
  30. P. Easom-McCaldin, A. Bouridane, A. Belatreche, R. Jiang, and S. Al-Maadeed, “Efficient quantum image classification using single qubit encoding,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  31. “mnist,” http://yann.lecun.com/exdb/mnist/.
  32. E. Farhi and H. Neven, “Classification with quantum neural networks on near term processors,” 2018. [Online]. Available: https://arxiv.org/abs/1802.06002
  33. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
  34. M. Ostaszewski, L. M. Trenkwalder, W. Masarczyk, E. Scerri, and V. Dunjko, “Reinforcement learning for optimization of variational quantum circuit architectures,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 182–18 194, 2021.
  35. J. Stokes, J. Izaac, N. Killoran, and G. Carleo, “Quantum natural gradient,” Quantum, vol. 4, p. 269, may 2020. [Online]. Available: https://doi.org/10.22331%2Fq-2020-05-25-269
  36. I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, aug 2019. [Online]. Available: https://doi.org/10.1038%2Fs41567-019-0648-8
  37. S. Stein, Y. Mao, J. Ang, and A. Li, “Qucnn: A quantum convolutional neural network with entanglement based backpropagation,” in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC).   IEEE, 2022, pp. 368–374.
  38. W. Jiang, J. Xiong, and Y. Shi, “A co-design framework of neural networks and quantum circuits towards quantum advantage,” Nature Communications, vol. 12, no. 1, jan 2021. [Online]. Available: https://doi.org/10.1038%2Fs41467-020-20729-5
  39. M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y. Niu, A. Zlokapa et al., “Tensorflow quantum: A software framework for quantum machine learning,” arXiv preprint arXiv:2003.02989, 2020.
  40. S. Y.-C. Chen, C.-M. Huang, C.-W. Hsing, and Y.-J. Kao, “Hybrid quantum-classical classifier based on tensor network and variational quantum circuit,” 2020. [Online]. Available: https://arxiv.org/abs/2011.14651
  41. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva, and N. Killoran, “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” 2018. [Online]. Available: https://arxiv.org/abs/1811.04968
  42. S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, S. Xu, and C. Ding, “Quclassi: A hybrid deep neural network architecture based on quantum state fidelity,” Proceedings of Machine Learning and Systems, vol. 4, pp. 251–264, 2022.
  43. W. Jiang, J. Xiong, and Y. Shi, “A co-design framework of neural networks and quantum circuits towards quantum advantage,” Nature communications, vol. 12, no. 1, p. 579, 2021.
  44. “Tensorflow Quantum Fair Comparison,” https://www.tensorflow.org/quantum/tutorials/mnist, [Online; accessed 07-March-2023].
  45. S. Stein, N. Wiebe, Y. Ding, P. Bo, K. Kowalski, N. Baker, J. Ang, and A. Li, “Eqc: ensembled quantum computing for variational quantum algorithms,” in Proceedings of the 49th Annual International Symposium on Computer Architecture, 2022, pp. 59–71.
Citations (8)

Summary

We haven't generated a summary for this paper yet.