Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PICO: Accelerating All k-Core Paradigms on GPU (2402.15253v1)

Published 23 Feb 2024 in cs.DC

Abstract: Core decomposition is a well-established graph mining problem with various applications that involves partitioning the graph into hierarchical subgraphs. Solutions to this problem have been developed using both bottom-up and top-down approaches from the perspective of vertex convergence dependency. However, existing algorithms have not effectively harnessed GPU performance to expedite core decomposition, despite the growing need for enhanced performance. Moreover, approaching performance limitations of core decomposition from two different directions within a parallel synchronization structure has not been thoroughly explored. This paper introduces an efficient GPU acceleration framework, PICO, for the Peel and Index2core paradigms of k-core decomposition. We propose PeelOne, a Peel-based algorithm designed to simplify the parallel logic and minimize atomic operations by eliminating vertices that are 'under-core'. We also propose an Index2core-based algorithm, named HistoCore, which addresses the issue of extensive redundant computations across both vertices and edges. Extensive experiments on NVIDIA RTX 3090 GPU show that PeelOne outperforms all other Peel-based algorithms, and HistoCore outperforms all other Index2core-based algorithms. Furthermore, HistoCore even outperforms PeelOne by 1.1x - 3.2x speedup on six datasets, which breaks the stereotype that the Index2core paradigm performs much worse than the Peel in a shared memory parallel setting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. S. B. Seidman, “Network structure and minimum degree,” Social Networks, pp. 269–287, 1983.
  2. C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis, “Corecluster: A degeneracy based graph clustering framework,” in AAAI, 2014.
  3. T. Yu and M. Liu, “A linear time algorithm for maximal clique enumeration in large sparse graphs,” Information Processing Letters, pp. 35–40, 2017.
  4. Y. Wang, L. Xu, and B. Wu, “A community detection method based on k-shell,” in IEEE Big Data, 2015, pp. 2314–2319.
  5. C. Peng, T. G. Kolda, and A. Pinar, “Accelerating community detection by using k-core subgraphs,” ArXiv, 2014.
  6. R. Andersen and K. Chellapilla, “Finding dense subgraphs with size bounds,” in Algorithms and Models for the Web-Graph, 2009.
  7. Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Global reinforcement of social networks: The anchored coreness problem,” in SIGMOD, New York, NY, USA, 2020, p. 2211–2226.
  8. X. Sun, X. Huang, and D. Jin, “Fast algorithms for core maximization on large graphs,” Proc. VLDB Endow., p. 1350–1362, 2022.
  9. K. Liu, S. Wang, Y. Zhang, and C. Xing, “An efficient algorithm for the anchored k-core budget minimization problem,” in ICDE, 2021, pp. 1356–1367.
  10. B. Zhou, Y. Lv, J. Wang, J. Zhang, and Q. Xuan, “Attacking the core structure of complex network,” IEEE Transactions on Computational Social Systems, pp. 1428–1442, 2023.
  11. M. Pellegrini, M. Baglioni, and F. Geraci, “Protein complex prediction for large protein protein interaction networks with the core and peel method,” BMC Bioinformatics, 2016.
  12. H. A. Filho, J. Machicao, and O. M. Bruno, “A hierarchical model of metabolic machinery based on the kcore decomposition of plant metabolic networks,” PLOS ONE, 2018.
  13. C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: measuring collaboration of directed graphs based on degeneracy,” Knowledge and Information Systems, pp. 311–343, 2013.
  14. Q. Dai, R.-H. Li, G. Wang, R. Mao, Z. Zhang, and Y. Yuan, “Core decomposition on uncertain graphs revisited,” TKDE, pp. 196–210, 2023.
  15. T. Weng, X. Zhou, K. Li, P. Peng, and K. Li, “Efficient distributed approaches to core maintenance on large dynamic graphs,” TPDS, pp. 129–143, 2022.
  16. K. Gabert, A. Pinar, and d. V. Çatalyürek, “Shared-memory scalable k-core maintenance on dynamic graphs and hypergraphs,” in IPDPSW, 2021, pp. 998–1007.
  17. F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis, “The core decomposition of networks: theory, algorithms and applications,” VLDB, pp. 61–92, 2020.
  18. L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of a network node and its relation to degree and coreness,” Nature Communications, p. 10168, 2016.
  19. H. Zhang, H. Hou, L. Zhang, H. Zhang, and Y. Wu, “Accelerating core decomposition in large temporal networks using gpus,” in Neural Information Processing, 2017, pp. 893–903.
  20. A. Mehrafsa, S. Chester, and A. Thomo, “Vectorising k-core decomposition for gpu acceleration,” in Proceedings of the 32nd International Conference on Scientific and Statistical Database Management, 2020.
  21. A. Ahmad, L. Yuan, D. Yan, G. Guo, J. Chen, and C. Zhang, “Accelerating k-core decomposition by a gpu,” in ICDE, 2023, pp. 1818–1831.
  22. Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock: A high-performance graph processing library on the gpu,” in PPoPP, 2016.
  23. P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the gpu using cuda,” in High Performance Computing, 2007, pp. 197–208.
  24. M. Sha, Y. Li, and K.-L. Tan, “Self-adaptive graph traversal on gpus,” in SIGMOD, 2021, p. 1558–1570.
  25. L. Hu, L. Zou, and Y. Liu, “Accelerating triangle counting on gpu,” in SIGMOD, 2021, p. 736–748.
  26. K. Wang, D. Fussell, and C. Lin, “A fast work-efficient sssp algorithm for gpus,” in PPoPP, 2021, p. 133–146.
  27. A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular graphs for gpu-friendly graph processing,” in ASPLOS, New York, NY, USA, 2018, p. 622–636.
  28. R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing,” ACM Comput. Surv., 2015.
  29. A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph processing using streaming partitions,” in SOSP, 2013, p. 472–488.
  30. P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee, “Fast iterative graph computation: A path centric approach,” in SC, 2014, p. 401–412.
  31. Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From ”think like a vertex” to ”think like a graph”,” Proc. VLDB Endow., p. 193–204, 2013.
  32. J. Anantpur and R. Govindarajan, “Taming warp divergence,” in International Symposium on Code Generation and Optimization, 2017, p. 50–60.
  33. V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decomposition of networks,” CoRR, 2003.
  34. J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition in massive networks,” in ICDE, 2011, pp. 51–62.
  35. D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/o efficient core graph decomposition: Application to degeneracy ordering,” TKDE, pp. 75–90, 2019.
  36. A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core decomposition,” TPDS, pp. 288–300, 2013.
  37. N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm for k-core decomposition on multicore processors,” in IEEE Big Data), 2014, pp. 9–16.
  38. H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore platforms,” in IPDPSW, 2017, pp. 1482–1491.
  39. B. Brock, A. Buluç, T. Mattson, S. McMillan, and J. Moreira, “The graphblas c api specification,” GraphBLAS. org, Tech. Rep, 2019.
  40. J. Kim and S. Lim, “(p,n)-core: Core decomposition in signed networks,” in Database Systems for Advanced Applications, 2022, pp. 543–551.
  41. X. Wu, W. Wei, L. Tang, J. Lu, and J. Lü, “Coreness and hℎhitalic_h -index for weighted networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 3113–3122, 2019.
  42. N. A. Arafat, A. Khan, A. K. Rai, and B. Ghosh, “Neighborhood-based hypergraph core decomposition,” Proc. VLDB Endow., p. 2061–2074, may 2023.
  43. X. Liao, Q. Liu, J. Jiang, X. Huang, J. Xu, and B. Choi, “Distributed d-core decomposition over large directed graphs,” Proc. VLDB Endow., p. 1546–1558, 2022.
  44. F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core decomposition of uncertain graphs,” in KDD, New York, NY, USA, 2014, p. 1316–1325.
  45. R.-H. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved algorithms for maximal clique search in uncertain networks,” in ICDE, 2019, pp. 1178–1189.
  46. B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R.-H. Li, “Index-based optimal algorithm for computing k-cores in large uncertain graphs,” in ICDE, 2019, pp. 64–75.
  47. R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large dynamic graphs,” TKDE, pp. 2453–2465, 2014.
  48. N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua, “Parallel algorithm for core maintenance in dynamic graphs,” in IEEE International Conference on Distributed Computing Systems, 2017, pp. 2366–2371.
  49. D. Yu, N. Wang, Q. Luo, F. Li, J. Yu, X. Cheng, and Z. Cai, “Fast core maintenance in dynamic graphs,” IEEE Transactions on Computational Social Systems, pp. 710–723, 2022.
  50. K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma, “Preventing unraveling in social networks: The anchored k-core problem,” in Automata, Languages, and Programming, 2012, pp. 440–451.
  51. C. Li, F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “Efficient progressive minimum k-core search,” Proc. VLDB Endow., p. 362–375, 2019.
  52. D. Chu, F. Zhang, X. Lin, W. Zhang, Y. Zhang, Y. Xia, and C. Zhang, “Finding the best k in core decomposition: A time and space optimal solution,” in ICDE, 2020, pp. 685–696.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com