Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bargaining-based Approach for Feature Trading in Vertical Federated Learning (2402.15247v1)

Published 23 Feb 2024 in cs.LG, cs.AI, and cs.MA

Abstract: Vertical Federated Learning (VFL) has emerged as a popular machine learning paradigm, enabling model training across the data and the task parties with different features about the same user set while preserving data privacy. In production environment, VFL usually involves one task party and one data party. Fair and economically efficient feature trading is crucial to the commercialization of VFL, where the task party is considered as the data consumer who buys the data party's features. However, current VFL feature trading practices often price the data party's data as a whole and assume transactions occur prior to the performing VFL. Neglecting the performance gains resulting from traded features may lead to underpayment and overpayment issues. In this study, we propose a bargaining-based feature trading approach in VFL to encourage economically efficient transactions. Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties. We analyze the proposed bargaining model under perfect and imperfect performance information settings, proving the existence of an equilibrium that optimizes the parties' objectives. Moreover, we develop performance gain estimation-based bargaining strategies for imperfect performance information scenarios and discuss potential security issues and solutions. Experiments on three real-world datasets demonstrate the effectiveness of the proposed bargaining model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving vertical federated learning for tree-based models,” arXiv preprint arXiv:2008.06170, 2020.
  2. K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, “Secureboost: A lossless federated learning framework,” IEEE Intelligent Systems, vol. 36, no. 6, pp. 87–98, 2021.
  3. W. Chen, G. Ma, T. Fan, Y. Kang, Q. Xu, and Q. Yang, “Secureboost+: A high performance gradient boosting tree framework for large scale vertical federated learning,” arXiv preprint arXiv:2110.10927, 2021.
  4. S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.
  5. Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “Fate: An industrial grade platform for collaborative learning with data protection,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 10 320–10 325, 2021.
  6. Y. Xie, Z. Wang, D. Gao, D. Chen, L. Yao, W. Kuang, Y. Li, B. Ding, and J. Zhou, “Federatedscope: A flexible federated learning platform for heterogeneity,” Proceedings of the VLDB Endowment, vol. 16, no. 5, pp. 1059–1072, 2023.
  7. C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu et al., “Fedml: A research library and benchmark for federated machine learning,” arXiv preprint arXiv:2007.13518, 2020.
  8. Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang, and Q. Yang, “Vertical federated learning,” arXiv preprint arXiv:2211.12814, 2022.
  9. J. Pei, F. Zhu, Z. Cong, X. Luo, H. Liu, and X. Mu, “Data pricing and data asset governance in the ai era,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 4058–4059.
  10. J. Pei, “A survey on data pricing: from economics to data science,” IEEE Transactions on knowledge and Data Engineering, vol. 34, no. 10, pp. 4586–4608, 2020.
  11. W. Jia-qi and M. Zhang, “Research on data asset pricing based on bargaining model,” Procedia Computer Science, vol. 221, pp. 601–608, 2023.
  12. C. Chai, J. Liu, N. Tang, G. Li, and Y. Luo, “Selective data acquisition in the wild for model charging,” Proceedings of the VLDB Endowment, vol. 15, no. 7, pp. 1466–1478, 2022.
  13. D. Acemoglu, A. Makhdoumi, A. Malekian, and A. Ozdaglar, “Too much data: Prices and inefficiencies in data markets,” American Economic Journal: Microeconomics, vol. 14, no. 4, pp. 218–256, 2022.
  14. J. F. Nash Jr, “The bargaining problem,” Econometrica: Journal of the econometric society, pp. 155–162, 1950.
  15. X. Jiang, X. Zhou, and J. Grossklags, “Comprehensive analysis of privacy leakage in vertical federated learning during prediction.” Proc. Priv. Enhancing Technol., vol. 2022, no. 2, pp. 263–281, 2022.
  16. X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on model predictions in vertical federated learning,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE).   IEEE, 2021, pp. 181–192.
  17. X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catastrophic data leakage in vertical federated learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 994–1006, 2021.
  18. L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and S. Y. Philip, “Privacy and robustness in federated learning: Attacks and defenses,” IEEE transactions on neural networks and learning systems, 2022.
  19. P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances in Cryptology—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18.   Springer, 1999, pp. 223–238.
  20. A. C. Yao, “Protocols for secure computations,” in 23rd annual symposium on foundations of computer science (sfcs 1982).   IEEE, 1982, pp. 160–164.
  21. Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos: An experimental study,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE).   IEEE, 2022, pp. 965–978.
  22. Y. Shi, H. Yu, and C. Leung, “Towards fairness-aware federated learning,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  23. H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.
  24. K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and T. Ranbaduge, “Vertical federated learning: Challenges, methodologies and experiments,” arXiv preprint arXiv:2202.04309, 2022.
  25. Q. Li, C. Thapa, L. Ong, Y. Zheng, H. Ma, S. A. Camtepe, A. Fu, and Y. Gao, “Vertical federated learning: Taxonomies, threats, and prospects,” arXiv preprint arXiv:2302.01550, 2023.
  26. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
  27. T. Song, Y. Tong, and S. Wei, “Profit allocation for federated learning,” in 2019 IEEE International Conference on Big Data (Big Data).   IEEE, 2019, pp. 2577–2586.
  28. T. Wang, J. Rausch, C. Zhang, R. Jia, and D. Song, “A principled approach to data valuation for federated learning,” Federated Learning: Privacy and Incentive, pp. 153–167, 2020.
  29. Z. Liu, Y. Chen, H. Yu, Y. Liu, and L. Cui, “Gtg-shapley: Efficient and accurate participant contribution evaluation in federated learning,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 4, pp. 1–21, 2022.
  30. X. Tu, K. Zhu, N. C. Luong, D. Niyato, Y. Zhang, and J. Li, “Incentive mechanisms for federated learning: From economic and game theoretic perspective,” IEEE transactions on cognitive communications and networking, vol. 8, no. 3, pp. 1566–1593, 2022.
  31. Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A survey of incentive mechanism design for federated learning,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 2, pp. 1035–1044, 2021.
  32. R. H. L. Sim, Y. Zhang, M. C. Chan, and B. K. H. Low, “Collaborative machine learning with incentive-aware model rewards,” in International conference on machine learning.   PMLR, 2020, pp. 8927–8936.
  33. S. Zheng, Y. Cao, M. Yoshikawa, H. Li, and Q. Yan, “Fl-market: Trading private models in federated learning,” in 2022 IEEE International Conference on Big Data (Big Data).   IEEE, 2022, pp. 1525–1534.
  34. S. W. Driessen, G. Monsieur, and W.-J. Van Den Heuvel, “Data market design: a systematic literature review,” Ieee access, vol. 10, pp. 33 123–33 153, 2022.
  35. S. A. Azcoitia and N. Laoutaris, “A survey of data marketplaces and their business models,” ACM SIGMOD Record, vol. 51, no. 3, pp. 18–29, 2022.
  36. S. Chawla, S. Deep, P. Koutris, and Y. Teng, “Revenue maximization for query pricing,” arXiv preprint arXiv:1909.00845, 2019.
  37. R. C. Fernandez, P. Subramaniam, and M. J. Franklin, “Data market platforms: Trading data assets to solve data problems,” arXiv preprint arXiv:2002.01047, 2020.
  38. A. Muschalle, F. Stahl, A. Löser, and G. Vossen, “Pricing approaches for data markets,” in Enabling Real-Time Business Intelligence: 6th International Workshop, BIRTE 2012, Held at the 38th International Conference on Very Large Databases, VLDB 2012, Istanbul, Turkey, August 27, 2012, Revised Selected Papers 6.   Springer, 2013, pp. 129–144.
  39. A. Acquisti, C. Taylor, and L. Wagman, “The economics of privacy,” Journal of economic Literature, vol. 54, no. 2, pp. 442–492, 2016.
  40. L. K. Fleischer and Y.-H. Lyu, “Approximately optimal auctions for selling privacy when costs are correlated with data,” in Proceedings of the 13th ACM conference on electronic commerce, 2012, pp. 568–585.
  41. Z. Cong, X. Luo, J. Pei, F. Zhu, and Y. Zhang, “Data pricing in machine learning pipelines,” Knowledge and Information Systems, vol. 64, no. 6, pp. 1417–1455, 2022.
  42. S. Alaei, A. Makhdoumi, and A. Malekian, “Optimal subscription planning for digital goods,” Operations Research, 2023.
  43. Y. Jiao, P. Wang, D. Niyato, M. A. Alsheikh, and S. Feng, “Profit maximization auction and data management in big data markets,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2017, pp. 1–6.
  44. X. Cao, Y. Chen, and K. R. Liu, “Data trading with multiple owners, collectors, and users: An iterative auction mechanism,” IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 2, pp. 268–281, 2017.
  45. W. Gao, W. Yu, F. Liang, W. G. Hatcher, and C. Lu, “Privacy-preserving auction for big data trading using homomorphic encryption,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 2, pp. 776–791, 2018.
  46. Z. Zhang, X. Liu, Z. Zheng, C. Zhang, M. Xu, J. Pan, C. Yu, F. Wu, J. Xu, and K. Gai, “Optimizing multiple performance metrics with deep gsp auctions for e-commerce advertising,” in Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 993–1001.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yue Cui (31 papers)
  2. Liuyi Yao (19 papers)
  3. Zitao Li (21 papers)
  4. Yaliang Li (117 papers)
  5. Bolin Ding (112 papers)
  6. Xiaofang Zhou (60 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.