Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of unbiased resilient estimators in discrete quantum systems (2402.15242v4)

Published 23 Feb 2024 in quant-ph

Abstract: The Cram\'er-Rao bound serves as a crucial lower limit for the mean squared error of an estimator in frequentist parameter estimation. Paradoxically, it requires highly accurate prior knowledge of the estimated parameter for constructing the optimal unbiased estimator. In contrast, Bhattacharyya bounds offer a more robust estimation framework with respect to prior accuracy by introducing additional constraints on the estimator. In this work, we examine divergences that arise in the computation of these bounds and establish the conditions under which they remain valid. Notably, we show that when the number of constraints exceeds the number of measurement outcomes, an estimator with finite variance typically does not exist. Furthermore, we systematically investigate the properties of these bounds using paradigmatic examples, comparing them to the Cram\'er-Rao and Bayesian approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Matteo GA Paris. Quantum estimation for quantum technology. International Journal of Quantum Information, 7(supp01):125–137, 2009.
  2. Quantum metrology from a quantum information science perspective. Journal of Physics A: Mathematical and Theoretical, 47(42):424006, 2014.
  3. Advances in quantum metrology. Nature photonics, 5(4):222–229, 2011.
  4. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 7(12):962–965, 2011.
  5. Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nature Photonics, 7(8):613–619, 2013.
  6. Quantum limits in optical interferometry. Progress in Optics, 60:345–435, 2015.
  7. Sensitivity bounds for multiparameter quantum metrology. Physical review letters, 121(13):130503, 2018.
  8. Ultimate accuracy limit of quantum pulse-compression ranging. Physical review letters, 128(1):010501, 2022.
  9. Quantum-enhanced doppler lidar. npj Quantum Information, 8(1):147, 2022.
  10. Heisenberg-limited quantum lidar for joint range and velocity estimation. arXiv preprint arXiv:2311.14546, 2023.
  11. Quantum illumination with gaussian states. Physical review letters, 101(25):253601, 2008.
  12. Quantum estimation methods for quantum illumination. Physical review letters, 118(7):070803, 2017.
  13. Quantum illumination with a hetero-homodyne receiver and sequential detection. Phys. Rev. Appl., 20:014030, Jul 2023.
  14. Thermometry in the quantum regime: recent theoretical progress. Journal of Physics A: Mathematical and Theoretical, 52(30):303001, 2019.
  15. Strongly coupled fermionic probe for nonequilibrium thermometry. New Journal of Physics, 2023.
  16. Using polarons for sub-nk quantum nondemolition thermometry in a bose-einstein condensate. Physical review letters, 122(3):030403, 2019.
  17. Thermodynamics in the quantum regime. Fundamental Theories of Physics, 195:1–2, 2018.
  18. L Davidovich and RL de Matos Filho. Quantum illumination strategy for parameter estimation. Physical Review A, 108(4):042612, 2023.
  19. Harald Cramer. Mathematical methods of statistics. Princeton mathematical series. Princeton Univ. Press, Princeton, NJ, 1954.
  20. C. Radhakrishna Rao. Information and the Accuracy Attainable in the Estimation of Statistical Parameters, pages 235–247. Springer New York, New York, NY, 1992.
  21. Non-asymptotic analysis of quantum metrology protocols beyond the cramér–rao bound. Journal of Physics Communications, 2(1):015027, 2018.
  22. Quantum metrology in the finite-sample regime. arXiv preprint arXiv:2307.06370, 2023.
  23. True precision limits in quantum metrology. New Journal of Physics, 17(1):013010, 2015.
  24. Minimum variance estimation without regularity assumptions. The Annals of Mathematical Statistics, pages 581–586, 1951.
  25. A Bhattacharyya. On some analogues of the amount of information and their use in statistical estimation. Sankhyā: The Indian Journal of Statistics, pages 1–14, 1946.
  26. R McAulay and E Hofstetter. Barankin bounds on parameter estimation. IEEE Transactions on Information Theory, 17(6):669–676, 1971.
  27. Luc Knockaert. The barankin bound and threshold behavior in frequency estimation. IEEE Transactions on Signal Processing, 45(9):2398–2401, 1997.
  28. Jonathan S Abel. A bound on mean-square-estimate error. IEEE Transactions on Information Theory, 39(5):1675–1680, 1993.
  29. Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables and stochastic processes. Sec 8.2. 2002.
  30. Hierarchies of frequentist bounds for quantum metrology: From cramér-rao to barankin. Phys. Rev. Lett., 130:260801, Jun 2023.
  31. Statistical distance and the geometry of quantum states. Physical Review Letters, 72(22):3439, 1994.
  32. Multi-parameter estimation beyond quantum fisher information. Journal of Physics A: Mathematical and Theoretical, 53(36):363001, 2020.
  33. π𝜋\piitalic_π-corrected heisenberg limit. Physical review letters, 124(3):030501, 2020.
  34. BJN Blight and PV Rao. The convergence of bhattacharyya bounds. Biometrika, 61(1):137–142, 1974.
  35. Quantum fisher information matrix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical, 53(2):023001, 2020.
  36. MJ Holland and K Burnett. Interferometric detection of optical phase shifts at the heisenberg limit. Physical review letters, 71(9):1355, 1993.
  37. Tom M Apostol. Calculus, Volume 1, Sec. 7.6. John Wiley & Sons, 1991.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com