Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(Almost) Everything is a Dicke model -- Mapping non-superradiant correlated light-matter systems to the exactly solvable Dicke model (2402.15209v3)

Published 23 Feb 2024 in cond-mat.str-el and quant-ph

Abstract: We investigate classes of interacting quantum spin systems in a single-mode cavity with a Dicke coupling, as a paradigmatic example of strongly correlated light-matter systems. Coming from the limit of weak light-matter couplings and large number of matter entities, we map the relevant low-energy sector of a broad class of models in the non-superradiant phases onto the exactly solvable Dicke model. We apply the outcomes to the Dicke-Ising model as a paradigmatic example, in agreement with results obtained by mean-field theory. We further accompany and verify our findings with finite-size calculations, using exact diagonalization and the series expansion method pcst++.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. Ising model in a light-induced quantized transverse field, Physical Review Research 2(2), 023131 (2020), 10.1103/physrevresearch.2.023131.
  2. Quantum phases in circuit QED with a superconducting qubit array, Scientific Reports 4(1) (2014), 10.1038/srep04083.
  3. Series expansions in closed and open quantum many-body systems with multiple quasiparticle types, Physical Review A 108(1), 013323 (2023), 10.1103/physreva.108.013323.
  4. Signatures of the ultrastrong light-matter coupling regime, Physical Review B 79(20), 201303 (2009), 10.1103/physrevb.79.201303.
  5. Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nature Physics 6(10), 772 (2010), 10.1038/nphys1730.
  6. Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime, Physical Review Letters 105(23), 237001 (2010), 10.1103/physrevlett.105.237001.
  7. B. M. Garraway, The Dicke model in quantum optics: Dicke model revisited, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1939), 1137 (2011), 10.1098/rsta.2010.0333.
  8. Cold atoms in cavity-generated dynamical optical potentials, Reviews of Modern Physics 85(2), 553 (2013), 10.1103/revmodphys.85.553.
  9. Ultrastrong coupling regimes of light-matter interaction, Reviews of Modern Physics 91(2), 025005 (2019), 10.1103/revmodphys.91.025005.
  10. Ultrastrong coupling between light and matter, Nature Reviews Physics 1(1), 19 (2019), 10.1038/s42254-018-0006-2.
  11. N. Rivera and I. Kaminer, Light–matter interactions with photonic quasiparticles, Nature Reviews Physics 2(10), 538 (2020), 10.1038/s42254-020-0224-2.
  12. S. Ashhab and F. Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states, Physical Review A 81(4), 042311 (2010), 10.1103/physreva.81.042311.
  13. Cavity-Induced Modifications of Molecular Structure in the Strong-Coupling Regime, Physical Review X 5(4), 041022 (2015), 10.1103/physrevx.5.041022.
  14. F. Herrera and F. C. Spano, Cavity-Controlled Chemistry in Molecular Ensembles, Physical Review Letters 116(23), 238301 (2016), 10.1103/physrevlett.116.238301.
  15. Ground State Electroluminescence, Physical Review Letters 116(11), 113601 (2016), 10.1103/physrevlett.116.113601.
  16. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED, Physical Review X 8(1), 011002 (2018), 10.1103/physrevx.8.011002.
  17. G. Mazza and A. Georges, Superradiant Quantum Materials, Physical Review Letters 122(1), 017401 (2019), 10.1103/physrevlett.122.017401.
  18. Deterministic quantum nonlinear optics with single atoms and virtual photons, Physical Review A 95(6), 063849 (2017), 10.1103/physreva.95.063849.
  19. Manipulating quantum materials with quantum light, Physical Review B 99(8), 085116 (2019), 10.1103/physrevb.99.085116.
  20. Mott polaritons in cavity-coupled quantum materials, New Journal of Physics 21(7), 073066 (2019), 10.1088/1367-2630/ab31c7.
  21. V. Rokaj, S. I. Mistakidis and H. R. Sadeghpour, Cavity induced collective behavior in the polaritonic ground state, SciPost Physics 14(6) (2023), 10.21468/scipostphys.14.6.167.
  22. Cavity Light-Matter Entanglement through Quantum Fluctuations, Physical Review Letters 131(2), 023601 (2023), 10.1103/physrevlett.131.023601.
  23. R. H. Dicke, Coherence in Spontaneous Radiation Processes, Physical Review 93(1), 99 (1954), 10.1103/physrev.93.99.
  24. K. Hepp and E. H. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model, Annals of Physics 76(2), 360 (1973), 10.1016/0003-4916(73)90039-0.
  25. S. Gopalakrishnan, B. L. Lev and P. M. Goldbart, Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions, Physical Review Letters 107(27), 277201 (2011), 10.1103/physrevlett.107.277201.
  26. Multicriticality and quantum fluctuation in a generalized Dicke model, Physical Review A 104(4), 043708 (2021), 10.1103/physreva.104.043708.
  27. One Generalization of the Dicke-Type Models, Interdisciplinary Journal Nonlinear Phenomena in Complex Systems 26(3), 293 (2023), 10.5281/ZENODO.10034496.
  28. G. Alli and G. L. Sewell, New methods and structures in the theory of the multi-mode Dicke laser model, Journal of Mathematical Physics 36(10), 5598 (1995), 10.1063/1.531279.
  29. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system, Physical Review A 75(1), 013804 (2007), 10.1103/physreva.75.013804.
  30. Dynamical phase transition in the open Dicke model, Proceedings of the National Academy of Sciences 112(11), 3290 (2015), 10.1073/pnas.1417132112.
  31. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa, Advanced Quantum Technologies 2(1-2) (2018), 10.1002/qute.201800043.
  32. Numerically Exact Treatment of Many-Body Self-Organization in a Cavity, Physical Review Letters 125(9), 093604 (2020), 10.1103/physrevlett.125.093604.
  33. F. Carollo and I. Lesanovsky, Exactness of Mean-Field Equations for Open Dicke Models with an Application to Pattern Retrieval Dynamics, Physical Review Letters 126(23), 230601 (2021), 10.1103/physrevlett.126.230601.
  34. F. T. Hioe, Phase Transitions in Some Generalized Dicke Models of Superradiance, Physical Review A 8(3), 1440 (1973), 10.1103/physreva.8.1440.
  35. F. Mivehvar, Conventional and unconventional Dicke models: Multistabilities and nonequilibrium dynamics, 10.48550/ARXIV.2307.05686 (2023), 2307.05686.
  36. First-order photon condensation in magnetic cavities: A two-leg ladder model, SciPost Phys. 15, 113 (2023), 10.21468/SciPostPhys.15.3.113.
  37. S. Gammelmark and K. Mølmer, Phase transitions in an Ising chain interacting with a single mode cavity field, New Journal of Physics 13(5), 053035 (2011), 10.1088/1367-2630/13/5/053035, 1102.1905.
  38. Quantum phase transition of nonlocal Ising chain with transverse field in a resonator, Physical Review B 90(9), 094510 (2014), 10.1103/physrevb.90.094510.
  39. Quantum Phase Diagram of the Dicke-Ising model, In preparation (2024).
  40. T. Matsubara and H. Matsuda, A Lattice Model of Liquid Helium, Progress of Theoretical Physics 16, 416 (1956), 10.1143/ptp.16.416.
  41. C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Physical Review E 67, 066203 (2003), 10.1103/PhysRevE.67.066203.
  42. C. Knetter, K. P. Schmidt and G. S. Uhrig, High order perturbation theory for spectral densities of multi-particle excitations: S=1/2𝑆12S=1/2italic_S = 1 / 2 two-leg Heisenberg ladder, The European Physical Journal B 36(4), 525 (2003), 10.1140/epjb/e2004-00008-2.
  43. A. Schellenberger and K. P. Schmidt, Raw data to "(Almost) Everything is a Dicke model – Mapping correlated light-matter systems to the exactly solvable Dicke model", 10.5281/zenodo.10695570 (2024).
  44. F. Wegner, Flow-equations for Hamiltonians, Annalen der Physik 506(2), 77 (1994), 10.1002/andp.19945060203.
  45. C. Knetter and G. Uhrig, Perturbation theory by flow equations: Dimerized and frustrated S=1/2𝑆12S=1/2italic_S = 1 / 2 chain, The European Physical Journal B 13(2), 209 (2000), 10.1007/s100510050026.
  46. Free electron gas in cavity quantum electrodynamics, Physical Review Research 4(1), 013012 (2022), 10.1103/physrevresearch.4.013012.
  47. J. Li, L. Schamriß and M. Eckstein, Effective theory of lattice electrons strongly coupled to quantum electromagnetic fields, Physical Review B 105(16), 165121 (2022), 10.1103/physrevb.105.165121.
  48. Array programming with NumPy, Nature 585(7825), 357 (2020), 10.1038/s41586-020-2649-2.
  49. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020), 10.1038/s41592-019-0686-2.
  50. SymPy: symbolic computing in Python, PeerJ Computer Science 3, e103 (2017), 10.7717/peerj-cs.103.
  51. J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science & Engineering 9(3), 90 (2007), 10.1109/MCSE.2007.55.
  52. matplotlib/matplotlib: REL: v3.6.1, 10.5281/zenodo.7162185 (2022).
  53. FAU-kpslab/pcstpp_CoefficientGenerator: v1.0.0, 10.5281/zenodo.7866584 (2023).
  54. M.-w. Xiao, Theory of transformation for the diagonalization of quadratic Hamiltonians, 10.48550/ARXIV.0908.0787 (2009), 0908.0787.
  55. N. N. Bogoliubov, On the theory of superfluidity, Journal of Physics 11(1), 23 (1947).
  56. N. N. Bogoljubov, V. V. Tolmachov and D. V. Širkov, A New Method in the Theory of Superconductivity, Fortschritte der Physik 6(11–12), 605 (1958), 10.1002/prop.19580061102.
  57. N. N. Bogoljubov, On a new method in the theory of superconductivity, Il Nuovo Cimento 7(6), 794 (1958), 10.1007/bf02745585.
  58. J. G. Valatin, Comments on the theory of superconductivity, Il Nuovo Cimento 7(6), 843 (1958), 10.1007/bf02745589.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com