Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-loop design for scalable performance of vehicular formations (2402.15208v1)

Published 23 Feb 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a novel control design for vehicular formations, which is an alternative to the conventional second-order consensus protocol. The design is motivated by the closed-loop system, which we construct as first-order systems connected in series, and is therefore called serial consensus. The serial consensus design will guarantee stability of the closed-loop system under the minimum requirement of the underlying communication graphs each containing a connected spanning tree -- something that is not true in general for the conventional consensus protocols. Here, we show that the serial consensus design also gives guarantees on the worst-case transient behavior of the formation, which are independent of the number of vehicles and the underlying graph structure. In particular this shows that the serial consensus design can be used to guarantee string stability of the formation, and is therefore suitable for directed formations. We show that it can be implemented through message passing or measurements to neighbors at most two hops away. The results are illustrated through numerical examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sept 2004.
  2. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sept 2004.
  3. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 988–1001, June 2003.
  4. F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limitations and algorithms for complex networks,” in Proc. Amer. Control Conf., 2014, pp. 3287–3292.
  5. B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson, “Coherence in large-scale networks: Dimension-dependent limitations of local feedback,” IEEE Trans. Autom. Control, vol. 57, no. 9, pp. 2235–2249, 2012.
  6. M. Siami and N. Motee, “Fundamental limits and tradeoffs on disturbance propagation in large-scale dynamical networks,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 4055–4062, 2016.
  7. E. Tegling, P. Mitra, H. Sandberg, and B. Bamieh, “On fundamental limitations of dynamic feedback control in regular large-scale networks,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 4936–4951, 2019.
  8. D. Swaroop and J. Hedrick, “String stability of interconnected systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 349–357, March 1996.
  9. P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1835–1842, Oct 2004.
  10. B. Besselink and S. Knorn, “Scalable input-to-state stability for performance analysis of large-scale networks,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 507–512, July 2018.
  11. E. Tegling, B. Bamieh, and H. Sandberg, “Scale fragilities in localized consensus dynamics,” Automatica, vol. 153, p. 111046, 2023.
  12. W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local information exchange,” Int. J. Robust Nonlinear Control, vol. 17, no. 10-11, pp. 1002–1033, 2007.
  13. S. Patterson and B. Bamieh, “Consensus and coherence in fractal networks,” IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 338–348, 2014.
  14. S. Stüdli, M. M. Seron, and R. H. Middleton, “Vehicular platoons in cyclic interconnections with constant inter-vehicle spacing,” in 20th IFAC World Congress, 2017, pp. 2511 – 2516.
  15. C. Cantos, J. Veerman, and D. Hammond, “Signal velocity in oscillator arrays,” Eur. Phys. J. Spec., vol. 225, no. 6, pp. 1115–1126, Sep 2016.
  16. S. Stüdli, M. Seron, and R. Middleton, “From vehicular platoons to general networked systems: String stability and related concepts,” Annu. Rev. Control, vol. 44, pp. 157–172, 2017.
  17. S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annu. Rev. Control, vol. 47, pp. 81–97, 2019.
  18. P. Barooah, P. G. Mehta, and J. P. Hespanha, “Mistuning-based control design to improve closed-loop stability margin of vehicular platoons,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2100–2113, 2009.
  19. I. Herman, S. Knorn, and A. Ahlén, “Disturbance scaling in bidirectional vehicle platoons with different asymmetry in position and velocity coupling,” Automatica, vol. 82, pp. 13–20, 2017.
  20. B. Bamieh, M. Jovanovic, P. Mitra, and S. Patterson, “Effect of topological dimension on rigidity of vehicle formations: Fundamental limitations of local feedback,” in Proc. IEEE Conf. Decis. Control, 2008, pp. 369–374.
  21. A. Feintuch and B. Francis, “Infinite chains of kinematic points,” Automatica, vol. 48, no. 5, pp. 901–908, 2012.
  22. H. Hao and P. Barooah, “On achieving size-independent stability margin of vehicular lattice formations with distributed control,” IEEE Trans. Autom. Control, vol. 57, no. 10, pp. 2688–2694, Oct 2012.
  23. S. Darbha, S. Konduri, and P. R. Pagilla, “Benefits of v2v communication for autonomous and connected vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 5, pp. 1954–1963, 2019.
  24. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, 2015.
  25. J. Hansson and E. Tegling, “A closed-loop design for scalable high-order consensus,” in Proc. IEEE Conf. Decis. Control, 2023, pp. 7388–7394.
Citations (1)

Summary

We haven't generated a summary for this paper yet.