Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-Chirp-Domain Index Modulation for Affine Frequency Division Multiplexing (2402.15185v1)

Published 23 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: Affine frequency division multiplexing (AFDM), tailored as a novel multicarrier technique utilizing chirp signals for high-mobility communications, exhibits marked advantages compared to traditional orthogonal frequency division multiplexing (OFDM). AFDM is based on the discrete affine Fourier transform (DAFT) with two modifiable parameters of the chirp signals, termed as the pre-chirp parameter and post-chirp parameter, respectively. These parameters can be fine-tuned to avoid overlapping channel paths with different delays or Doppler shifts, leading to performance enhancement especially for doubly dispersive channel. In this paper, we propose a novel AFDM structure with the pre-chirp index modulation (PIM) philosophy (AFDM-PIM), which can embed additional information bits into the pre-chirp parameter design for both spectral and energy efficiency enhancement. Specifically, we first demonstrate that the application of distinct pre-chirp parameters to various subcarriers in the AFDM modulation process maintains the orthogonality among these subcarriers. Then, different pre-chirp parameters are flexibly assigned to each AFDM subcarrier according to the incoming bits. By such arrangement, aside from classical phase/amplitude modulation, extra binary bits can be implicitly conveyed by the indices of selected pre-chirping parameters realizations without additional energy consumption. At the receiver, both a maximum likelihood (ML) detector and a reduced-complexity ML-minimum mean square error (ML-MMSE) detector are employed to recover the information bits. It has been shown via simulations that the proposed AFDM-PIM exhibits superior bit error rate (BER) performance compared to classical AFDM, OFDM and IM-aided OFDM algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. R. Liu, M. Hua, K. Guan, X. Wang, L. Zhang, T. Mao, D. Zhang, Q. Wu, and A. Jamalipour, “6G enabled advanced transportation systems,” arXiv:2305.15184, 2023.
  2. R. Liu, H. Lin, H. Lee, F. Chaves, H. Lim, and J. Sköld, “Beginning of the journey toward 6G: Vision and framework,” IEEE Commun. Mag., vol. 61, no. 10, pp. 8–9, Oct, 2023.
  3. J. Wu and P. Fan, “A survey on high mobility wireless communications: Challenges, opportunities and solutions,” IEEE Access, vol. 4, pp. 450–476, Jan. 2016.
  4. A. Bemani, N. Ksairi, and M. Kountouris, “AFDM: A full diversity next generation waveform for high mobility communications,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Montreal, QC, Canada.   IEEE, Jun. 2021, pp. 1–6.
  5. A. Bemani, N. Ksairi, and M. Kountouris, “Affine frequency division multiplexing for next generation wireless communications,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 8214 – 8229, Nov. 2023.
  6. H. Yin and Y. Tang, “Pilot aided channel estimation for AFDM in doubly dispersive channels,” in Proc. IEEE Int. Conf. Commun. China (ICCC), Foshan, China, Aug. 2022, pp. 308–313.
  7. A. Bemani, N. Ksairi, and M. Kountouris, “Low complexity equalization for AFDM in doubly dispersive channels,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Apr. 2022, pp. 5273–5277.
  8. T. Mao, Q. Wang, Z. Wang, and S. Chen, “Novel index modulation techniques: A survey,” IEEE Commun. Surv. Tuts., vol. 21, no. 1, pp. 315–348, Jul. 2018.
  9. N. Ishikawa, S. Sugiura, and L. Hanzo, “50 years of permutation, spatial and index modulation: From classic RF to visible light communications and data storage,” IEEE Commun. Surv. Tuts., vol. 20, no. 3, pp. 1905–1938, Mar. 2018.
  10. M. Wen, B. Zheng, K. J. Kim, M. Di Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications,” IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 1949–1972, Jul. 2019.
  11. T. Mao, Z. Zhou, Z. Xiao, C. Han, and Z. Wang, “Index-modulation-aided terahertz communications with reconfigurable intelligent surface,” IEEE Trans. Wireless Commun., early access, Jan. 2024, doi: 10.1109/TWC.2023.3347670.
  12. Y. Cui and X. Fang, “Performance analysis of massive spatial modulation MIMO in high-speed railway,” IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 8925–8932, Nov. 2016.
  13. Y. Tao, M. Wen, and Y. Ge, “Affine frequency division multiplexing with index modulation,” arXiv:2310.05475, 2023.
  14. T. Van Luong and Y. Ko, “Impact of CSI uncertainty on MCIK-OFDM: Tight closed-form symbol error probability analysis,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1272–1279, Feb. 2018.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com