Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the adjoint method for neural ordinary differential equation network (2402.15141v1)

Published 23 Feb 2024 in math.NA, cs.LG, and cs.NA

Abstract: Perturbation and operator adjoint method are used to give the right adjoint form rigourously. From the derivation, we can have following results: 1) The loss gradient is not an ODE, it is an integral and we shows the reason; 2) The traditional adjoint form is not equivalent with the back propagation results. 3) The adjoint operator analysis shows that if and only if the discrete adjoint has the same scheme with the discrete neural ODE, the adjoint form would give the same results as BP does.

Summary

We haven't generated a summary for this paper yet.