Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A modified debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization (2402.15086v2)

Published 23 Feb 2024 in stat.ME

Abstract: Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. doi: 10.1214/19-AOS1866
  2. doi: 10.1093/ije/dym018
  3. doi: 10.1177/0962280215597579
  4. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Statistical Methods in Medical Research. 2007;16(4):309-330. doi: 10.1177/09622802060Didel77743
  5. doi: https://doi.org/10.1002/sim.6358
  6. Chao JC, Swanson NR. Consistent Estimation with a Large Number of Weak Instruments. Econometrica. 2005;73(5):1673-1692. doi: https://doi.org/10.1111/j.1468-0262.2005.00632.x
  7. John Bound DAJ, Baker RM. Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak. Journal of the American Statistical Association. 1995;90(430):443-450. doi: 10.1080/01621459.1995.10476536
  8. doi: 10.1093/hmg/ddy163
  9. doi: 10.1038/s41588-018-0164-2
  10. doi: 10.1214/20-STS802
  11. Pacini D, Windmeijer F. Robust inference for the Two-Sample 2SLS estimator. Economics Letters. 2016;146:50-54. doi: https://doi.org/10.1016/j.econlet.2016.06.033
  12. doi: 10.1111/rssb.12275
  13. Hyunseung Kang TTC, Small DS. Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization. Journal of the American Statistical Association. 2016;111(513):132-144. doi: 10.1080/01621459.2014.994705
  14. doi: 10.1038/s43586-021-00092-5
  15. doi: https://doi.org/10.1002/gepi.21758
  16. Pierce BL, Burgess S. Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators. American Journal of Epidemiology. 2013;178(7):1177-1184. doi: 10.1093/aje/kwt084
  17. doi: https://doi.org/10.1002/sim.7221
  18. doi: 10.1214/20-AOS2027
  19. doi: 10.1214/22-AOS2247
  20. doi: https://doi.org/10.1111/biom.13732
  21. doi: 10.1086/519795
  22. doi: https://doi.org/10.1002/gepi.21965
  23. doi: 10.1093/ije/dyv080
  24. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nature Reviews Cardiology. 2016;13(6):368-78. doi: 10.1038/nrcardio.2016.25
  25. doi: 10.1016/j.jacc.2021.12.012
  26. doi: 10.1038/s41467-017-02317-2
  27. doi: 10.1038/s41467-019-13690-5
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com