Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Descripción automática de secciones delgadas de rocas: una aplicación Web (2402.15039v1)

Published 23 Feb 2024 in cs.CV and cs.LG

Abstract: The identification and characterization of various rock types is one of the fundamental activities for geology and related areas such as mining, petroleum, environment, industry and construction. Traditionally, a human specialist is responsible for analyzing and explaining details about the type, composition, texture, shape and other properties using rock samples collected in-situ or prepared in a laboratory. The results become subjective based on experience, in addition to consuming a large investment of time and effort. The present proposal uses artificial intelligence techniques combining computer vision and natural language processing to generate a textual and verbal description from a thin section image of rock. We build a dataset of images and their respective textual descriptions for the training of a model that associates the relevant features of the image extracted by EfficientNetB7 with the textual description generated by a Transformer network, reaching an accuracy value of 0.892 and a BLEU value of 0.71. This model can be a useful resource for research, professional and academic work, so it has been deployed through a Web application for public use.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. \APACrefYear1998. \APACrefbtitleCarbonate sediments and rocks under the microscope: a colour atlas Carbonate sediments and rocks under the microscope: a colour atlas. \APACaddressPublisherCRC Press. \PrintBackRefs\CurrentBib
  2. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAutomatic classification of plutonic rocks with deep learning Automatic classification of plutonic rocks with deep learning.\BBCQ \APACjournalVolNumPagesApplied Computing and Geosciences10100061. {APACrefURL} https://www.sciencedirect.com/science/article/pii/S2590197421000094 {APACrefDOI} \doihttps://doi.org/10.1016/j.acags.2021.100061 \PrintBackRefs\CurrentBib
  3. \APACinsertmetastarBGS2024{APACrefauthors}British Geological Survey.  \APACrefYearMonthDay2024. \APACrefbtitleBRITROCKS: mineralogy and petrology collections database. Britrocks: mineralogy and petrology collections database. {APACrefURL} https://www.bgs.ac.uk/technologies/databases/bgs-rock-collections/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  4. \APACinsertmetastarcastro1991petrografia{APACrefauthors}Castro, A.  \APACrefYearMonthDay1991. \APACrefbtitlePetrografía básica. Petrografía básica. \APACaddressPublisherParaninfo. \PrintBackRefs\CurrentBib
  5. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleRock image classification using deep residual neural network with transfer learning Rock image classification using deep residual neural network with transfer learning.\BBCQ \APACjournalVolNumPagesFrontiers in Earth Science10. \PrintBackRefs\CurrentBib
  6. \APACinsertmetastarDagostino_Early_stop{APACrefauthors}D’Agostino, A.  \APACrefYearMonthDay2022. \APACrefbtitleEarly Stopping in TensorFlow — prevent overfitting of a neural network. Early stopping in tensorflow — prevent overfitting of a neural network. {APACrefURL} https://towardsdatascience.com/ \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  7. \APACrefYearMonthDay\bibnodate. \APACrefbtitleVirtual Petrography. Virtual petrography. {APACrefURL} https://planetearth.utsc.utoronto.ca/VirtualMic/ \APACrefnoteUniversity of Toronto. Último acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay2020. \BBOQ\APACrefatitlePetrographic microfacies classification with deep convolutional neural networks Petrographic microfacies classification with deep convolutional neural networks.\BBCQ \APACjournalVolNumPagesComputers & geosciences142. \PrintBackRefs\CurrentBib
  9. \APACrefYearMonthDay2009. \BBOQ\APACrefatitleImagenet: A large-scale hierarchical image database Imagenet: A large-scale hierarchical image database.\BBCQ \BIn \APACrefbtitle2009 IEEE conference on computer vision and pattern recognition 2009 ieee conference on computer vision and pattern recognition (\BPGS 248–255). \PrintBackRefs\CurrentBib
  10. \APACinsertmetastarDerochette2021{APACrefauthors}Derochette, J.  \APACrefYearMonthDay2021. \APACrefbtitleMinerals Microscopy and Spectroscopy. Minerals microscopy and spectroscopy. {APACrefURL} http://jm-derochette.be/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  11. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleA deep learning model for quick and accurate rock recognition with smartphones. Mob A deep learning model for quick and accurate rock recognition with smartphones. mob.\BBCQ \APACjournalVolNumPagesInf. Syst2020. \PrintBackRefs\CurrentBib
  12. \APACinsertmetastarFrederik_drop{APACrefauthors}Frederik, V.  \APACrefYearMonthDay2023. \APACrefbtitleInterpreting Training/Validation Accuracy and Loss. Interpreting training/validation accuracy and loss. {APACrefURL} https://medium.com/@frederik.vl/interpreting-training-validation-accuracy-and-loss-cf16f0d5329f \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  13. \APACinsertmetastarHollochersf{APACrefauthors}Hollocher, K.  \APACrefYearMonthDay\bibnodate. \APACrefbtitlePetrology, GEO-320. Petrology, geo-320. {APACrefURL} https://muse.union.edu/hollochk/kurt-hollocher/petrology/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleRock Image Classification Based on EfficientNet and Triplet Attention Mechanism Rock image classification based on efficientnet and triplet attention mechanism.\BBCQ \APACjournalVolNumPagesApplied Sciences135. \PrintBackRefs\CurrentBib
  15. \APACinsertmetastarMindat{APACrefauthors}Hudson Institute of Mineralogy.  \APACrefYearMonthDay2023. \APACrefbtitleMindat.org. Mindat.org. {APACrefURL} https://www.mindat.org/ \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  16. \APACrefYear1996. \APACrefbtitleAtlas en Color Rocas y Minerales Lamina Delgada Atlas en color rocas y minerales lamina delgada. \APACaddressPublisherElsevier España. \PrintBackRefs\CurrentBib
  17. \APACrefYear2017. \APACrefbtitleRocks and minerals in thin section: A colour atlas Rocks and minerals in thin section: A colour atlas. \APACaddressPublisherCRC Press. \PrintBackRefs\CurrentBib
  18. \APACrefYear1982. \APACrefbtitleAtlas of igneous rocks and their textures Atlas of igneous rocks and their textures (\BVOL 148). \APACaddressPublisherLongman Harlow. \PrintBackRefs\CurrentBib
  19. \APACrefYear1984. \APACrefbtitleAtlas of sedimentary rocks under the microscope Atlas of sedimentary rocks under the microscope. \APACaddressPublisherLongman. \PrintBackRefs\CurrentBib
  20. \APACinsertmetastarMartin_Learn_rate{APACrefauthors}Martin, T.  \APACrefYearMonthDay2023. \APACrefbtitleA (Very Short) Visual Introduction to Learning Rate Schedulers (With Code). A (very short) visual introduction to learning rate schedulers (with code). {APACrefURL} https://medium.com/@theom/a-very-short-visual-introduction-to-learning-rate-schedulers-with-code-189eddffdb00 \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleReconocimiento y descripción automática de rocas sedimentarias mediante Inteligencia Artificial Reconocimiento y descripción automática de rocas sedimentarias mediante inteligencia artificial.\BBCQ \APACjournalVolNumPagesVIII Congreso Internacional de Investigación. REDU. Universidad Técnica de Ambato. \PrintBackRefs\CurrentBib
  22. \APACinsertmetastarNain2021{APACrefauthors}Nain, A.  \APACrefYearMonthDay2021. \APACrefbtitleImage captioning. Image captioning. \APACrefnoteCode examples-Computer Vision. [Source code]. Availability: https://keras.io/examples/vision/image_captioning/ \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAutomatic classification of volcanic rocks from thin section images using transfer learning networks Automatic classification of volcanic rocks from thin section images using transfer learning networks.\BBCQ \APACjournalVolNumPagesNeural Computing and Applications331811531–11540. \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleGuide to Thin Section Microscopy Guide to thin section microscopy.\BBCQ \PrintBackRefs\CurrentBib
  25. \APACinsertmetastarreiter2018BLEU{APACrefauthors}Reiter, E.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA structured review of the validity of BLEU A structured review of the validity of bleu.\BBCQ \APACjournalVolNumPagesComputational Linguistics443393–401. \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleIdentifying rock thin section based on convolutional neural networks Identifying rock thin section based on convolutional neural networks.\BBCQ \BIn \APACrefbtitleProceedings of the 2019 9th International Workshop on Computer Science and Engineering (WCSE 2019), Hong Kong, China Proceedings of the 2019 9th international workshop on computer science and engineering (wcse 2019), hong kong, china (\BPGS 15–17). \PrintBackRefs\CurrentBib
  27. \APACinsertmetastarSanz{APACrefauthors}Sanz, F.  \APACrefYearMonthDay2024. \APACrefbtitleTransformer: la tecnología que domina el mundo. Transformer: la tecnología que domina el mundo. {APACrefURL} https://www.themachinelearners.com/transformer/#Que_es_un_Transformer \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  28. \APACinsertmetastarStrekeisen2020{APACrefauthors}Strekeisen, A.  \APACrefYearMonthDay2020. \APACrefbtitleAlex Strekeisen. I vetrini della mia fantasia. Alex strekeisen. i vetrini della mia fantasia. {APACrefURL} http://www.alexstrekeisen.it/english/index.php \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  29. \APACinsertmetastarGeologicalS{APACrefauthors}The Geological Society of London.  \APACrefYearMonthDay2014. \APACrefbtitleGeology for Society. Geology for society. {APACrefURL} https://www.geolsoc.org.uk/geology-for-society \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  30. \APACinsertmetastarOpenUniversity2023{APACrefauthors}The Open University.  \APACrefYearMonthDay2023. \APACrefbtitleVirtual Microscope. Virtual microscope. {APACrefURL} https://www.virtualmicroscope.org/collections \APACrefnoteÚltimo acceso: 2023-12-19 \PrintBackRefs\CurrentBib
  31. \APACinsertmetastarUribe{APACrefauthors}Uribe, I.  \APACrefYearMonthDay2023. \APACrefbtitleEl impacto de la Inteligencia Artificial en la toma de decisiones. El impacto de la inteligencia artificial en la toma de decisiones. {APACrefURL} https://secmotic.com/inteligencia-artificial-toma-decisiones/#gref \APACrefnoteÚltimo acceso: 2024-01-27 \PrintBackRefs\CurrentBib
  32. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleAttention is all you need Attention is all you need.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems30. \PrintBackRefs\CurrentBib
  33. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleCNN explainer: learning convolutional neural networks with interactive visualization Cnn explainer: learning convolutional neural networks with interactive visualization.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Visualization and Computer Graphics2721396-1406. \PrintBackRefs\CurrentBib
  34. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleDeep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection.\BBCQ \APACjournalVolNumPagesJournal of Rock Mechanics and Geotechnical Engineering1441140–1152. \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleIntelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms.\BBCQ \APACjournalVolNumPagesSensors19183914. \PrintBackRefs\CurrentBib

Summary

We haven't generated a summary for this paper yet.