Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elastic interactions compete with persistent cell motility to drive durotaxis (2402.15036v2)

Published 23 Feb 2024 in cond-mat.soft and physics.bio-ph

Abstract: The directed migration of cells toward stiffer substrate regions or durotaxis is relevant to tissue development and tumor progression. Here, we introduce a phenomenological model for single cell durotaxis that incorporates both elastic deformation-mediated cell-substrate interactions and the stochasticity of cell migration. Our model is motivated by a key observation in an early demonstration of durotaxis: a single, contractile cell at a sharp interface between a softer and a stiffer region of an elastic substrate reorients and migrates towards the stiffer region. We model migrating cells as self-propelling, persistently motile agents that exert contractile traction forces on their elastic substrate. The resulting substrate deformations induce elastic interactions with mechanical boundaries, captured by an elastic potential. Cell dynamics are governed by two critical parameters: the strength of the traction-induced boundary interaction (A) and the persistence of cell motility (Pe). The resulting elastic forces and torques align cells perpendicular (parallel) to the boundary and accumulate (deplete) them at clamped (free) boundaries. A clamped boundary induces an attractive potential, promoting durotaxis, while a free boundary generates a repulsive potential, preventing anti-durotaxis. By analyzing steady-state position and orientation probabilities, we show how accumulation and depletion depend on elastic potential strength and motility. We compare our findings with biological microswimmers and other active particles that accumulate at confining boundaries. The model defines metrics for boundary accumulation and durotaxis, presenting a phase diagram with three regimes: durotaxis, adurotaxis, and motility-induced accumulation. Our model predicts how durotaxis depends on cell contractility and motility, offering insights and testable predictions for future experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. K. M. Yamada and M. Sixt, Mechanisms of 3d cell migration, Nature Reviews molecular cell biology 20, 738 (2019).
  2. G. S. Redner, M. F. Hagan, and A. Baskaran, Structure and dynamics of a phase-separating active colloidal fluid, Biophysical Journal 104, 640a (2013).
  3. M. E. Cates and J. Tailleur, Motility-induced phase separation, Annual Review of Condensed Matter Physics 6, 219 (2015).
  4. S. SenGupta, C. A. Parent, and J. E. Bear, The principles of directed cell migration, Nature Reviews Molecular Cell Biology 22, 529 (2021).
  5. B. Alberts, Molecular biology of the cell (Garland science, 2017).
  6. P. Friedl, K. Wolf, and J. Lammerding, Nuclear mechanics during cell migration, Current opinion in cell biology 23, 55 (2011).
  7. R. J. Pelham and Y.-l. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proceedings of the National Academy of Sciences 94, 13661 (1997).
  8. U. S. Schwarz and S. A. Safran, Physics of adherent cells, Rev. Mod. Phys. 85, 1327 (2013).
  9. A. Shellard and R. Mayor, Durotaxis: the hard path from in vitro to in vivo, Developmental cell 56, 227 (2021a).
  10. R. Sunyer and X. Trepat, Durotaxis, Current Biology 30, R383 (2020).
  11. A. Shellard and R. Mayor, Collective durotaxis along a self-generated stiffness gradient in vivo, Nature 600, 690 (2021b).
  12. P.-C. Chen, X.-Q. Feng, and B. Li, Unified multiscale theory of cellular mechanical adaptations to substrate stiffness, Biophysical Journal 121, 3474 (2022).
  13. W. Shu and C. N. Kaplan, Effects of matrix viscoelasticity and geometrical constraint on cell migrations: A multiscale bio-chemo-mechanical model, Biophysical Journal 122, 535a (2023).
  14. I. B. Bischofs and U. S. Schwarz, Cell organization in soft media due to active mechanosensing, Proceedings of the National Academy of Sciences 100, 9274 (2003).
  15. I. B. Bischofs, S. A. Safran, and U. S. Schwarz, Elastic interactions of active cells with soft materials, Phys Rev E Stat Nonlin Soft Matter Phys 69, 021911 (2004).
  16. S. Bose, K. Dasbiswas, and A. Gopinath, Matrix stiffness modulates mechanical interactions and promotes contact between motile cells, Biomedicines 9 (2021).
  17. A. Carlsson, Mechanisms of cell propulsion by active stresses, New journal of physics 13, 073009 (2011).
  18. M. Caraglio and T. Franosch, Analytic solution of an active brownian particle in a harmonic well, Physical Review Letters 129, 158001 (2022).
  19. F. Di Trapani, T. Franosch, and M. Caraglio, Active brownian particles in a circular disk with an absorbing boundary, Physical Review E 107, 064123 (2023).
  20. D. B. Brückner, P. Ronceray, and C. P. Broedersz, Inferring the dynamics of underdamped stochastic systems, Phys. Rev. Lett. 125, 058103 (2020).
  21. L. Walpole, An elastic singularity in joined half-spaces, International journal of engineering science 34, 629 (1996).
  22. Y. Li, Z. Hu, and C. Li, New method for measuring poisson’s ratio in polymer gels, Journal of applied polymer science 50, 1107 (1993).
  23. D. Heyes, Translational and rotational diffusion of rod shaped molecules by molecular dynamics simulations, The Journal of Chemical Physics 150 (2019).
  24. M. Doi and S. Edwards, Dynamics of rod-like macromolecules in concentrated solution. part 1, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 74, 560 (1978).
  25. B. Ezhilan, R. Alonso-Matilla, and D. Saintillan, On the distribution and swim pressure of run-and-tumble particles in confinement, Journal of Fluid Mechanics 781 (2015).
  26. W. Yan and J. F. Brady, The force on a boundary in active matter, Journal of Fluid Mechanics 785, R1 (2015).
  27. J. Elgeti and G. Gompper, Run-and-tumble dynamics of self-propelled particles in confinement, EPL (Europhysics Letters) 109, 58003 (2015).
  28. C. G. Wagner, M. F. Hagan, and A. Baskaran, Steady-state distributions of ideal active brownian particles under confinement and forcing, Journal of Statistical Mechanics: Theory and Experiment 2017, 043203 (2017).
  29. D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces, Physics of Fluids 26, 071902 (2014).
  30. D. Giacché, T. Ishikawa, and T. Yamaguchi, Hydrodynamic entrapment of bacteria swimming near a solid surface, Physical Review E 82, 056309 (2010).
  31. A. E. Patteson, A. Gopinath, and P. E. Arratia, Active colloids in complex fluids, Current Opinion in Colloid & Interface Science 21, 86 (2016).
  32. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940).
  33. R. S. Larson and E. J. Lightfoot, Thermally activated escape from a lennard-jones potential well, Physica A: Statistical Mechanics and its Applications 149, 296 (1988).
  34. Actin flows mediate a universal coupling between cell speed and cell persistence, Cell 161, 374 (2015).
  35. A. Zemel, private communication.
  36. H. Mohammadi and C. A. McCulloch, Impact of elastic and inelastic substrate behaviors on mechanosensation, Soft Matter 10, 408 (2014).
  37. N. L. Dasanayake, P. J. Michalski, and A. E. Carlsson, General mechanism of actomyosin contractility, Physical review letters 107, 118101 (2011).
  38. R. De, A. Zemel, and S. A. Safran, Dynamics of cell orientation, Nature Physics 3, 655 (2007).
  39. M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford university press, 2017).

Summary

We haven't generated a summary for this paper yet.