What comes after optical-bypass network? A study on optical-computing-enabled network (2402.14970v1)
Abstract: A new architectural paradigm, named, optical-computing-enabled network, is proposed as a potential evolution of the currently used optical-bypass framework. The main idea is to leverage the optical computing capabilities performed on transitional lightpaths at intermediate nodes and such proposal reverses the conventional wisdom in optical-bypass network, that is, separating in-transit lightpaths in avoidance of unwanted interference. In optical-computing-enabled network, the optical nodes are therefore upgraded from conventional functions of add-drop and cross-connect to include optical computing / processing capabilities. This is enabled by exploiting the superposition of in-transit lightpaths for computing purposes to achieve greater capacity efficiency. While traditional network design and planning algorithms have been well-developed for optical-bypass framework in which the routing and resource allocation is dedicated to each optical channel (lightpath), more complicated problems arise in optical-computing-enabled architecture as a consequence of intricate interaction between optical channels and hence resulting into the establishment of the so-called integrated / computed lightpaths. This necessitates for a different framework of network design and planning to maximize the impact of optical computing opportunities. In highlighting this critical point, a detailed case study exploiting the optical aggregation operation to re-design the optical core network is investigated in this paper. Numerical results obtained from extensive simulations on the COST239 network are presented to quantify the efficacy of optical-computing-enabled approach versus the conventional optical-bypass-enabled one.
- doi:10.1098/rsta.2015.0191.
- arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2014.0440, doi:10.1098/rsta.2014.0440. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2014.0440
- doi:10.1109/JPROC.2022.3188337.
- doi:10.1109/JPROC.2022.3203215.
- doi:10.1109/JPROC.2022.3207920.
- doi:10.1109/JPROC.2022.3212229.
- doi:10.1364/JOCN.496992. URL https://opg.optica.org/jocn/abstract.cfm?URI=jocn-15-10-783
- NICT, Demonstration of world record: 319 tb/s transmission over 3,001 km with 4-core optical fiber (2021). URL https://www.nict.go.jp/en/press/2021/07/12-1.html
- doi:10.1364/OE.26.024190. URL http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-24190
- doi:10.1049/iet-opt.2017.0013.
- doi:10.1109/ICACT.2014.6779143.
- doi:10.1109/CSNDSP.2014.6923998.
- arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.3410, doi:10.1002/dac.3410. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3410
- doi:10.1109/NICS48868.2019.9023831.
- doi:10.1109/ATC.2019.8924515.
- doi:10.1109/JPROC.2011.2182589.
- doi:https://doi.org/10.1016/j.yofte.2023.103394. URL https://www.sciencedirect.com/science/article/pii/S1068520023001748
- doi:https://doi.org/10.1016/j.yofte.2020.102364.
- doi:https://doi.org/10.1016/j.ijleo.2019.163563.
- doi:10.1007/978-3-030-16250-4$_$8. URL https://doi.org/10.1007/978-3-030-16250-4$_$8
- doi:10.1109/JLT.2013.2290842.
- doi:10.1007/978-3-030-16250-4$_$12. URL https://doi.org/10.1007/978-3-030-16250-4$_$12
- doi:10.1038/s42254-023-00645-5. URL https://doi.org/10.1038/s42254-023-00645-5
- doi:10.1038/s41586-020-2764-0. URL https://doi.org/10.1038/s41586-020-2764-0
- doi:10.1038/s41566-023-01330-w. URL https://doi.org/10.1038/s41566-023-01330-w
- doi:10.1145/3603269.3604821. URL https://doi.org/10.1145/3603269.3604821
- doi:10.1145/3626111.3628177. URL https://doi.org/10.1145/3626111.3628177
- doi:10.1088/2040-8986/ab0e66. URL https://doi.org/10.1088/2040-8986/ab0e66
- doi:10.1109/JPHOT.2015.2418264.
- doi:10.1109/TNSM.2023.3283880.
- doi:10.1007/s11082-023-05123-x. URL https://doi.org/10.1007/s11082-023-05123-x
- doi:10.1109/MTTW56973.2022.9942542.
- doi:10.1109/MTTW53539.2021.9607182.
- doi:10.1007/s11082-022-03628-5. URL https://doi.org/10.1007/s11082-022-03628-5
- doi:10.1109/WRAP54064.2022.9758386.
- doi:10.1109/JSYST.2019.2938590.
- doi:https://doi.org/10.1016/j.yofte.2017.11.009.
- doi:https://doi.org/10.1016/j.comcom.2018.08.006.
- doi:10.1109/LCOMM.2017.2720661.
- doi:10.1109/ACCESS.2017.2761809.
- doi:10.1109/RTUWO.2018.8587873.
- doi:10.1007/s11235-018-0474-9. URL https://doi.org/10.1007/s11235-018-0474-9
- doi:10.1007/s11082-019-2104-5. URL https://doi.org/10.1007/s11082-019-2104-5
- doi:10.1007/s11082-021-03279-y. URL https://doi.org/10.1007/s11082-021-03279-y
- doi:10.1364/PS.2014.PW1B.3. URL http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3
- doi:10.1109/SIGTELCOM.2017.7849820.
- doi:10.1109/ICIST.2017.7926753.
- arXiv:2402.11618.
- doi:https://doi.org/10.1016/j.rio.2023.100504. URL https://www.sciencedirect.com/science/article/pii/S2666950123001566
- arXiv:https://pubs.aip.org/aip/app/article-pdf/doi/10.1063/5.0150989/18095171/086112_1_5.0150989.pdf, doi:10.1063/5.0150989. URL https://doi.org/10.1063/5.0150989
- doi:10.1109/JSTQE.2019.2943375.
- doi:10.1109/JLT.2021.3084353.
- doi:10.1109/JSTQE.2020.3032554.
- doi:10.1109/JSTQE.2023.3253846.
- doi:10.1109/JLT.2021.3097163.
- doi:10.1109/JLT.2013.2287219.
- doi:10.1109/JLT.2018.2873245.
- doi:10.1109/JLT.2019.2959803.