Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Lie algebra structures on symmetric powers (2402.14934v1)

Published 22 Feb 2024 in math.RA, math-ph, and math.MP

Abstract: Let $k$ be a field of any characteristic, $V$ a finite-dimensional vector space over $k$, and $Sd(V*)$ be the $d$-th symmetric power of the dual space $V*$. Given a linear map $\varphi$ on $V$ and an eigenvector $w$ of $\varphi$, we prove that the pair $(\varphi, w)$ can be used to construct a new Lie algebra structure on $Sd(V*)$. We prove that this Lie algebra structure is solvable, and in particular, it is nilpotent if $\varphi$ is a nilpotent map. We also classify the Lie algebras for all possible pairs $(\varphi, w)$, when $k=\mathbb{C}$ and $V$ is two-dimensional.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets