Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal predictions of Siegel modular invariant theories near the fixed points (2402.14915v1)

Published 22 Feb 2024 in hep-ph

Abstract: We analyze a general class of locally supersymmetric, CP and modular invariant models of lepton masses depending on two complex moduli taking values in the vicinity of a fixed point, where the theory enjoys a residual symmetry under a finite group. Like in models that depend on a single modulus, we find that all physical quantities exhibit a universal scaling with the distance from the fixed point. There is no dependence on the level of the construction, the weights of matter multiplets and their representations, with the only restriction that electroweak lepton doublets transform as irreducible triplets of the finite modular group. Also the form of the kinetic terms, which here are assumed to be neither minimal nor flavor blind, is irrelevant to the outcome. The result is remarkably simple and the whole class of examined theories gives rise to five independent patterns of neutrino mass matrices. Only in one of them, the predicted scaling agrees with the observed neutrino mass ratios and lepton mixing angles, exactly as in single modulus theories living close to $\tau=i$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. F. Feruglio, “Are neutrino masses modular forms?,” in From My Vast Repertoire …: Guido Altarelli’s Legacy, A. Levy, S. Forte, and G. Ridolfi, eds., pp. 227–266. 2019. arXiv:1706.08749 [hep-ph].
  2. S. Ferrara, D. Lust, A. D. Shapere, and S. Theisen, “Modular Invariance in Supersymmetric Field Theories,” Phys. Lett. B 225 (1989) 363.
  3. S. Ferrara,  D. Lust, and S. Theisen, “Target Space Modular Invariance and Low-Energy Couplings in Orbifold Compactifications,” Phys. Lett. B 233 (1989) 147–152.
  4. J. C. Criado and F. Feruglio, “Modular Invariance Faces Precision Neutrino Data,” SciPost Phys. 5 no. 5, (2018) 042, arXiv:1807.01125 [hep-ph].
  5. F. Feruglio, A. Strumia, and A. Titov, “Modular invariance and the QCD angle,” JHEP 07 (2023) 027, arXiv:2305.08908 [hep-ph].
  6. S. Hamidi and C. Vafa, “Interactions on Orbifolds,” Nucl. Phys. B 279 (1987) 465–513.
  7. L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The Conformal Field Theory of Orbifolds,” Nucl. Phys. B 282 (1987) 13–73.
  8. J. Lauer, J. Mas, and H. P. Nilles, “Duality and the Role of Nonperturbative Effects on the World Sheet,” Phys. Lett. B 226 (1989) 251–256.
  9. J. Lauer, J. Mas, and H. P. Nilles, “Twisted sector representations of discrete background symmetries for two-dimensional orbifolds,” Nucl. Phys. B 351 (1991) 353–424.
  10. J. Erler, D. Jungnickel, and J. Lauer, “Dependence of Yukawa couplings on the axionic background moduli of Z(N) orbifolds,” Phys. Rev. D 45 (1992) 3651–3668.
  11. S. Stieberger, “Moduli and twisted sector dependence on Z(N) x Z(M) orbifold couplings,” Phys. Lett. B 300 (1993) 347–353, arXiv:hep-th/9211027.
  12. J. Erler, D. Jungnickel, M. Spalinski, and S. Stieberger, “Higher twisted sector couplings of Z(N) orbifolds,” Nucl. Phys. B 397 (1993) 379–416, arXiv:hep-th/9207049.
  13. S. Stieberger, D. Jungnickel, J. Lauer, and M. Spalinski, “Yukawa couplings for bosonic Z(N) orbifolds: Their moduli and twisted sector dependence,” Mod. Phys. Lett. A 7 (1992) 3059–3070, arXiv:hep-th/9204037.
  14. A. Giveon, M. Porrati, and E. Rabinovici, “Target space duality in string theory,” Phys. Rept. 244 (1994) 77–202, arXiv:hep-th/9401139.
  15. D. Cremades, L. E. Ibanez, and F. Marchesano, “Yukawa couplings in intersecting D-brane models,” JHEP 07 (2003) 038, arXiv:hep-th/0302105.
  16. R. Blumenhagen, M. Cvetic, P. Langacker, and G. Shiu, “Toward realistic intersecting D-brane models,” Ann. Rev. Nucl. Part. Sci. 55 (2005) 71–139, arXiv:hep-th/0502005.
  17. S. A. Abel and M. D. Goodsell, “Realistic Yukawa Couplings through Instantons in Intersecting Brane Worlds,” JHEP 10 (2007) 034, arXiv:hep-th/0612110.
  18. R. Blumenhagen, B. Kors, D. Lust, and S. Stieberger, “Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes,” Phys. Rept. 445 (2007) 1–193, arXiv:hep-th/0610327.
  19. F. Marchesano, “Progress in D-brane model building,” Fortsch. Phys. 55 (2007) 491–518, arXiv:hep-th/0702094.
  20. I. Antoniadis, A. Kumar, and B. Panda, “Fermion Wavefunctions in Magnetized branes: Theta identities and Yukawa couplings,” Nucl. Phys. B 823 (2009) 116–173, arXiv:0904.0910 [hep-th].
  21. T. Kobayashi, S. Nagamoto, and S. Uemura, “Modular symmetry in magnetized/intersecting D-brane models,” PTEP 2017 no. 2, (2017) 023B02, arXiv:1608.06129 [hep-th].
  22. T. Kobayashi and H. Otsuka, “Classification of discrete modular symmetries in Type IIB flux vacua,” Phys. Rev. D 101 no. 10, (2020) 106017, arXiv:2001.07972 [hep-th].
  23. D. Cremades, L. E. Ibanez, and F. Marchesano, “Computing Yukawa couplings from magnetized extra dimensions,” JHEP 05 (2004) 079, arXiv:hep-th/0404229.
  24. H. Abe, K.-S. Choi, T. Kobayashi, and H. Ohki, “Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models,” Nucl. Phys. B 820 (2009) 317–333, arXiv:0904.2631 [hep-ph].
  25. S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi, and H. Uchida, “Revisiting modular symmetry in magnetized torus and orbifold compactifications,” Phys. Rev. D 102 no. 10, (2020) 105010, arXiv:2005.12642 [hep-th].
  26. S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada, and H. Uchida, “Modular symmetry by orbifolding magnetized T2×T2superscript𝑇2superscript𝑇2T^{2}\times T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT: realization of double cover of ΓNsubscriptΓ𝑁\Gamma_{N}roman_Γ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT,” JHEP 11 (2020) 101, arXiv:2007.06188 [hep-th].
  27. S. Ramos-Sanchez and M. Ratz, “Heterotic Orbifold Models,” arXiv:2401.03125 [hep-th].
  28. H. P. Nilles and S. Ramos-Sanchez, “The Flavor Puzzle: Textures and Symmetries,” 8, 2023. arXiv:2308.14810 [hep-ph].
  29. T. Kobayashi and M. Tanimoto, “Modular flavor symmetric models,” 7, 2023. arXiv:2307.03384 [hep-ph].
  30. G.-J. Ding and S. F. King, “Neutrino Mass and Mixing with Modular Symmetry,” arXiv:2311.09282 [hep-ph].
  31. M.-C. Chen, S. Ramos-Sánchez, and M. Ratz, “A note on the predictions of models with modular flavor symmetries,” Phys. Lett. B 801 (2020) 135153, arXiv:1909.06910 [hep-ph].
  32. A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, “Unification of Flavor, CP, and Modular Symmetries,” Phys. Lett. B 795 (2019) 7–14, arXiv:1901.03251 [hep-th].
  33. H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, “Eclectic Flavor Groups,” JHEP 02 (2020) 045, arXiv:2001.01736 [hep-ph].
  34. H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, “Lessons from eclectic flavor symmetries,” Nucl. Phys. B 957 (2020) 115098, arXiv:2004.05200 [hep-ph].
  35. H. P. Nilles, S. Ramos–Sánchez, and P. K. S. Vaudrevange, “Eclectic flavor scheme from ten-dimensional string theory – I. Basic results,” Phys. Lett. B 808 (2020) 135615, arXiv:2006.03059 [hep-th].
  36. A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, “The eclectic flavor symmetry of the ℤ𝟐subscriptℤ2\bm{\mathbb{Z}_{2}}blackboard_bold_Z start_POSTSUBSCRIPT bold_2 end_POSTSUBSCRIPT orbifold,” JHEP 02 (2021) 018, arXiv:2008.07534 [hep-th].
  37. H. P. Nilles, S. Ramos–Sánchez, and P. K. S. Vaudrevange, “Eclectic flavor scheme from ten-dimensional string theory - II detailed technical analysis,” Nucl. Phys. B 966 (2021) 115367, arXiv:2010.13798 [hep-th].
  38. A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, “Completing the eclectic flavor scheme of the ℤℤ\mathbb{Z}blackboard_Z22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT orbifold,” JHEP 06 (2021) 110, arXiv:2104.03981 [hep-th].
  39. M.-C. Chen, V. Knapp-Perez, M. Ramos-Hamud, S. Ramos-Sanchez, M. Ratz, and S. Shukla, “Quasi–eclectic modular flavor symmetries,” Phys. Lett. B 824 (2022) 136843, arXiv:2108.02240 [hep-ph].
  40. A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner, and P. K. S. Vaudrevange, “The first string-derived eclectic flavor model with realistic phenomenology,” JHEP 09 (2022) 224, arXiv:2207.10677 [hep-ph].
  41. G.-J. Ding, S. F. King, C.-C. Li, X.-G. Liu, and J.-N. Lu, “Neutrino mass and mixing models with eclectic flavor symmetry ΔΔ\Deltaroman_Δ(27) ⋊right-normal-factor-semidirect-product\rtimes⋊ T’,” JHEP 05 (2023) 144, arXiv:2303.02071 [hep-ph].
  42. C.-C. Li and G.-J. Ding, “Eclectic flavor group Δ⁢(27)⋊S3right-normal-factor-semidirect-productΔ27subscript𝑆3\Delta(27)\rtimes S_{3}roman_Δ ( 27 ) ⋊ italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and lepton model building,” arXiv:2308.16901 [hep-ph].
  43. F. Feruglio, “Universal Predictions of Modular Invariant Flavor Models near the Self-Dual Point,” Phys. Rev. Lett. 130 no. 10, (2023) 101801, arXiv:2211.00659 [hep-ph].
  44. F. Feruglio, “Fermion masses, critical behavior and universality,” JHEP 03 (2023) 236, arXiv:2302.11580 [hep-ph].
  45. A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, “Supersymmetry Breaking From Duality Invariant Gaugino Condensation,” Phys. Lett. B 245 (1990) 401–408.
  46. M. Cvetic, A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, “Target space duality, supersymmetry breaking and the stability of classical string vacua,” Nucl. Phys. B 361 (1991) 194–232.
  47. P. P. Novichkov, J. T. Penedo, and S. T. Petcov, “Modular flavour symmetries and modulus stabilisation,” JHEP 03 (2022) 149, arXiv:2201.02020 [hep-ph].
  48. J. M. Leedom, N. Righi, and A. Westphal, “Heterotic de Sitter beyond modular symmetry,” JHEP 02 (2023) 209, arXiv:2212.03876 [hep-th].
  49. K. Ishiguro, T. Kobayashi, and H. Otsuka, “Landscape of Modular Symmetric Flavor Models,” JHEP 03 (2021) 161, arXiv:2011.09154 [hep-ph].
  50. K. Ishiguro, H. Okada, and H. Otsuka, “Residual flavor symmetry breaking in the landscape of modular flavor models,” JHEP 09 (2022) 072, arXiv:2206.04313 [hep-ph].
  51. V. Knapp-Perez, X.-G. Liu, H. P. Nilles, S. Ramos-Sanchez, and M. Ratz, “Matter matters in moduli fixing and modular flavor symmetries,” Phys. Lett. B 844 (2023) 138106, arXiv:2304.14437 [hep-th].
  52. L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister, and E. Silverstein, “Beauty is attractive: Moduli trapping at enhanced symmetry points,” JHEP 05 (2004) 030, arXiv:hep-th/0403001.
  53. S. Enomoto, S. Iida, N. Maekawa, and T. Matsuda, “Beauty is more attractive: particle production and moduli trapping with higher dimensional interaction,” JHEP 01 (2014) 141, arXiv:1310.4751 [hep-ph].
  54. S. Kikuchi, T. Kobayashi, K. Nasu, and Y. Yamada, “Moduli trapping mechanism in modular flavor symmetric models,” JHEP 08 (2023) 081, arXiv:2307.13230 [hep-ph].
  55. F. Feruglio, V. Gherardi, A. Romanino, and A. Titov, “Modular invariant dynamics and fermion mass hierarchies around τ=i𝜏𝑖\tau=iitalic_τ = italic_i,” JHEP 05 (2021) 242, arXiv:2101.08718 [hep-ph].
  56. P. P. Novichkov, J. T. Penedo, and S. T. Petcov, “Fermion mass hierarchies, large lepton mixing and residual modular symmetries,” JHEP 04 (2021) 206, arXiv:2102.07488 [hep-ph].
  57. S. T. Petcov and M. Tanimoto, “A4subscript𝐴4A_{4}italic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT modular flavour model of quark mass hierarchies close to the fixed point τ=ω𝜏𝜔\tau=\omegaitalic_τ = italic_ω,” Eur. Phys. J. C 83 no. 7, (2023) 579, arXiv:2212.13336 [hep-ph].
  58. S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada, and H. Uchida, “Quark hierarchical structures in modular symmetric flavor models at level 6,” Phys. Rev. D 107 no. 5, (2023) 055014, arXiv:2301.03737 [hep-ph].
  59. Y. Abe, T. Higaki, J. Kawamura, and T. Kobayashi, “Quark masses and CKM hierarchies from S4′superscriptsubscript𝑆4′S_{4}^{\prime}italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT modular flavor symmetry,” Eur. Phys. J. C 83 no. 12, (2023) 1140, arXiv:2301.07439 [hep-ph].
  60. S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada, and H. Uchida, “Quark mass hierarchies and CP violation in A44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT ×\times× A44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT ×\times× A44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT modular symmetric flavor models,” JHEP 07 (2023) 134, arXiv:2302.03326 [hep-ph].
  61. Y. Abe, T. Higaki, J. Kawamura, and T. Kobayashi, “Quark and lepton hierarchies from S4’ modular flavor symmetry,” Phys. Lett. B 842 (2023) 137977, arXiv:2302.11183 [hep-ph].
  62. S. T. Petcov and M. Tanimoto, “A44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT modular flavour model of quark mass hierarchies close to the fixed point τ𝜏\tauitalic_τ = i∞\infty∞,” JHEP 08 (2023) 086, arXiv:2306.05730 [hep-ph].
  63. Y. Abe, T. Higaki, J. Kawamura, and T. Kobayashi, “Fermion hierarchies in SU(5) grand unification from Γ6′superscriptsubscriptΓ6′{\Gamma}_{6}^{\prime}roman_Γ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT modular flavor symmetry,” JHEP 08 (2023) 097, arXiv:2307.01419 [hep-ph].
  64. I. de Medeiros Varzielas, M. Levy, J. T. Penedo, and S. T. Petcov, “Quarks at the modular S44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT cusp,” JHEP 09 (2023) 196, arXiv:2307.14410 [hep-ph].
  65. S. T. Petcov, “On the Normalisation of the Modular Forms in Modular Invariant Theories of Flavour,” arXiv:2311.04185 [hep-ph].
  66. K. Ishiguro, T. Kobayashi, S. Nishimura and H. Otsuka, ,“Modular forms and hierarchical Yukawa couplings in heterotic Calabi-Yau compactifications,” arXiv:hep-th/2402.13563.
  67. P. Mayr and S. Stieberger, “Moduli dependence of one loop gauge couplings in (0,2) compactifications,” Phys. Lett. B 355 (1995) 107–116, arXiv:hep-th/9504129.
  68. S. Stieberger, “(0,2) heterotic gauge couplings and their M theory origin,” Nucl. Phys. B 541 (1999) 109–144, arXiv:hep-th/9807124.
  69. K. Ishiguro, T. Kobayashi, and H. Otsuka, “Spontaneous CP violation and symplectic modular symmetry in Calabi-Yau compactifications,” Nucl. Phys. B 973 (2021) 115598, arXiv:2010.10782 [hep-th].
  70. A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, “Siegel modular flavor group and CP from string theory,” Phys. Lett. B 816 (2021) 136176, arXiv:2012.09586 [hep-th].
  71. K. Ishiguro, T. Kobayashi, and H. Otsuka, “Symplectic modular symmetry in heterotic string vacua: flavor, CP, and R-symmetries,” JHEP 01 (2022) 020, arXiv:2107.00487 [hep-th].
  72. G.-J. Ding, F. Feruglio, and X.-G. Liu, “Automorphic Forms and Fermion Masses,” JHEP 01 (2021) 037, arXiv:2010.07952 [hep-th].
  73. G.-J. Ding, F. Feruglio, and X.-G. Liu, “CP symmetry and symplectic modular invariance,” SciPost Phys. 10 no. 6, (2021) 133, arXiv:2102.06716 [hep-ph].
  74. E. Gottschling, “Über die fixpunkte der siegelschen modulgruppe,” Mathematische Annalen 143 no. 2, (1961) 111–149.
  75. E. Gottschling, “Über die fixpunktuntergruppen der siegelschen modulgruppe,” Mathematische Annalen 143 no. 5, (1961) 399–430.
  76. E. Gottschling, “Die uniformisierbarkeit der fixpunkte eigentlich diskontinuierlicher gruppen von biholomorphen abbildungen,” Mathematische Annalen 169 no. 1, (1967) 26–54.
  77. M. Dine, R. G. Leigh, and D. A. MacIntire, “Of CP and other gauge symmetries in string theory,” Phys. Rev. Lett. 69 (1992) 2030–2032, arXiv:hep-th/9205011.
  78. K.-w. Choi, D. B. Kaplan, and A. E. Nelson, “Is CP a gauge symmetry?,” Nucl. Phys. B 391 (1993) 515–530, arXiv:hep-ph/9205202.
  79. R. G. Leigh, “The Strong CP problem, string theory and the Nelson-Barr mechanism,” in International Workshop on Recent Advances in the Superworld. 6, 1993. arXiv:hep-ph/9307214.
  80. M. Koecher, “Zur theorie der modulfunktionen n-ten grades,” Matematische Zeitschrift 59 (1954) .
  81. 2013.
  82. N. M. Katz and P. H. Tiep, “Rigid local systems and finite general linear groups,” Finite Fields and Their Applications 59 (2019) 134 – 174, arXiv:2002.05863 [math.RT].
  83. P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, “Generalised CP Symmetry in Modular-Invariant Models of Flavour,” JHEP 07 (2019) 165, arXiv:1905.11970 [hep-ph].
  84. A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, “A String Theory of Flavor and 𝒞⁢𝒫𝒞𝒫\mathcal{CP}caligraphic_C caligraphic_P,” Nucl. Phys. B 947 (2019) 114737, arXiv:1908.00805 [hep-th].
  85. X.-G. Liu, C.-Y. Yao, B.-Y. Qu, and G.-J. Ding, “Half-integral weight modular forms and application to neutrino mass models,” Phys. Rev. D 102 no. 11, (2020) 115035, arXiv:2007.13706 [hep-ph].
  86. C.-Y. Yao, X.-G. Liu, and G.-J. Ding, “Fermion masses and mixing from the double cover and metaplectic cover of the A5subscript𝐴5A_{5}italic_A start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT modular group,” Phys. Rev. D 103 no. 9, (2021) 095013, arXiv:2011.03501 [hep-ph].
  87. Y. Almumin, M.-C. Chen, V. Knapp-Pérez, S. Ramos-Sánchez, M. Ratz, and S. Shukla, “Metaplectic Flavor Symmetries from Magnetized Tori,” JHEP 05 (2021) 078, arXiv:2102.11286 [hep-th].
  88. K. Ishiguro, T. Kai, H. Okada, and H. Otsuka, “Flavor, CP and metaplectic modular symmetries in Type IIB chiral flux vacua,” JHEP 12 (2023) 136, arXiv:2305.19155 [hep-th].
  89. Y. Reyimuaji and A. Romanino, “Can an unbroken flavour symmetry provide an approximate description of lepton masses and mixing?,” JHEP 03 (2018) 067, arXiv:1801.10530 [hep-ph].
  90. S. Kikuchi, T. Kobayashi, K. Nasu, S. Takada, and H. Uchida, “S⁢p⁢(6,Z)𝑆𝑝6𝑍Sp(6,Z)italic_S italic_p ( 6 , italic_Z ) modular symmetry in flavor structures: quark flavor models and Siegel modular forms for Δ~⁢(96)~Δ96\widetilde{\Delta}(96)over~ start_ARG roman_Δ end_ARG ( 96 ),” arXiv:2310.17978 [hep-ph].
  91. M. Ricky Devi, “Neutrino Masses and Higher Degree Siegel Modular Forms,” arXiv:2401.16257 [hep-ph].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com