Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Estimates for First- and Second-Order Lagrange-Galerkin Moving Mesh Schemes for the One-Dimensional Convection-Diffusion Equation (2402.14691v2)

Published 22 Feb 2024 in math.NA and cs.NA

Abstract: A new moving mesh scheme based on the Lagrange-Galerkin method for the approximation of the one-dimensional convection-diffusion equation is studied. The mesh movement, which is prescribed by a discretized dynamical system for the nodal points, follows the direction of convection. It is shown that under a restriction of the time increment the mesh movement cannot lead to an overlap of the elements and therefore an invalid mesh. For the linear element, optimal error estimates in the $\ell\infty(L2) \cap \ell2(H_01)$ norm are proved in case of both, a first-order backward Euler method and a second-order two-step method in time. These results are based on new estimates of the time dependent interpolation operator derived in this work. Preservation of the total mass is verified for both choices of the time discretization. Numerical experiments are presented that confirm the error estimates and demonstrate that the proposed moving mesh scheme can circumvent limitations that the Lagrange-Galerkin method on a fixed mesh exhibits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Comput. Phys. 91(1), 32–54 (1990). DOI https://doi.org/10.1016/0021-9991(90)90003-J
  2. Comput. Math. Method. M. 2(2), 129–154 (2000). DOI 10.1080/10273660008833042
  3. RAIRO Anal. Numér. 15(1), 3–25 (1981)
  4. SIAM J. Numer. Anal. 50(2), 858–882 (2012). DOI 10.1137/100809982
  5. SIAM J. Numer. Anal. 50(6), 2824–2844 (2012). DOI 10.1137/100809994
  6. Numer. Math. 120(4), 601–638 (2012). DOI 10.1007/s00211-011-0418-8
  7. SIAM J. Sci. Comput. 37(6), B779–B803 (2015). DOI 10.1137/140973967
  8. Commun. Comput. Phys. 14(5), 1174–1206 (2013)
  9. Springer, New York (2008). DOI 10.1007/978-0-387-75934-0
  10. J. Comput. Phys. 228(14), 5160–5183 (2009)
  11. J. Sci. Comput. 80(3), 1777–1804 (2019). DOI 10.1007/s10915-019-00997-0
  12. J. Comput. Phys. 227(2), 1567–1596 (2007)
  13. M2AN Math. Model. Numer. Anal. 42(1), 25–55 (2008). DOI 10.1051/m2an:2007053
  14. Comput. Methods Appl. Mech. Engrg. 372, 113366, 24 (2020). DOI 10.1016/j.cma.2020.113366
  15. Comput. Methods Appl. Mech. Engrg. 376, Paper No. 113654, 28 (2021). DOI 10.1016/j.cma.2020.113654
  16. SIAM J. Numer. Anal. 19(5), 871–885 (1982). DOI 10.1137/0719063
  17. In: R. Vichnevetsky, R. Stepleman (eds.) Advances in Computer Methods for Partial Differential Equations IV, pp. 28–36. IMACS (1981)
  18. J. Sci. Comput. 92(2), 37 (2022). DOI 10.1007/s10915-022-01885-w
  19. J. Comput. Phys. 40(1), 202–249 (1981). DOI 10.1016/0021-9991(81)90207-2
  20. Springer, New York (2011). DOI 10.1007/978-1-4419-7916-2
  21. Hughes, T.J.R., Franca, L.P., Balestra, M.: Errata: “A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”. Comput. Methods Appl. Mech. Engrg. 62(1), 111 (1987). DOI 10.1016/0045-7825(87)90092-2
  22. SIAM J. Numer. Anal. 28(4), 990–1003 (1991). DOI 10.1137/0728052
  23. J. Comput. Appl. Math. 416, Paper No. 114442, 18 (2022). DOI 10.1016/j.cam.2022.114442
  24. ESAIM Math. Model. Numer. Anal. 51(5), 1637–1661 (2017). DOI 10.1051/m2an/2016078
  25. ESAIM Math. Model. Numer. Anal. 51(5), 1663–1689 (2017). DOI 10.1051/m2an/2017032
  26. J. Comput. Phys. 45(1), 1–42 (1982). DOI 10.1016/0021-9991(82)90101-2
  27. ESAIM Math. Model. Numer. Anal. 50(2), 361–380 (2016). DOI 10.1051/m2an/2015047
  28. Pironneau, O.: Finite Element Methods for Fluids. John Wiley and Sons, Chichester (1989)
  29. Numer. Math. 92(1), 161–177 (2002). DOI 10.1007/s002110100364
  30. J. Sci. Comput. 43(3), 416–432 (2010). DOI 10.1007/s10915-009-9283-3
  31. J. Comput. Phys. 230(9), 3302–3330 (2011). DOI 10.1016/j.jcp.2011.01.025
  32. Tabata, M.: A finite element approximation corresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)
  33. Jpn. J. Ind. Appl. Math. 33(1), 121–143 (2016). DOI 10.1007/s13160-015-0196-2
  34. Comput. Methods Appl. Mech. Eng. 95(1), 115–138 (1992)
  35. Appl. Math. Comput. 219(13), 7139–7150 (2013)

Summary

We haven't generated a summary for this paper yet.