Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seer: Proactive Revenue-Aware Scheduling for Live Streaming Services in Crowdsourced Cloud-Edge Platforms (2402.14619v1)

Published 22 Feb 2024 in cs.DC

Abstract: As live streaming services skyrocket, Crowdsourced Cloud-edge service Platforms (CCPs) have surfaced as pivotal intermediaries catering to the mounting demand. Despite the role of stream scheduling to CCPs' Quality of Service (QoS) and throughput, conventional optimization strategies struggle to enhancing CCPs' revenue, primarily due to the intricate relationship between resource utilization and revenue. Additionally, the substantial scale of CCPs magnifies the difficulties of time-intensive scheduling. To tackle these challenges, we propose Seer, a proactive revenue-aware scheduling system for live streaming services in CCPs. The design of Seer is motivated by meticulous measurements of real-world CCPs environments, which allows us to achieve accurate revenue modeling and overcome three key obstacles that hinder the integration of prediction and optimal scheduling. Utilizing an innovative Pre-schedule-Execute-Re-schedule paradigm and flexible scheduling modes, Seer achieves efficient revenue-optimized scheduling in CCPs. Extensive evaluations demonstrate Seer's superiority over competitors in terms of revenue, utilization, and anomaly penalty mitigation, boosting CCPs revenue by 147% and expediting scheduling $3.4 \times$ faster.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. ZIPPIA, “Live streaming statistics 2023: Facts about live streaming in the u.s.” 2023. [Online]. Available: https://www.zippia.com/advice/live-streaming-statistics/
  2. M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li, J. Yang, and X. Liu, “From cloud to edge: a first look at public edge platforms,” in Proceedings of the 21st ACM Internet Measurement Conference, 2021, pp. 37–53.
  3. F. Wang, J. Liu, C. Zhang, L. Sun, and K. Hwang, “Intelligent edge learning for personalized crowdsourced livecast: Challenges, opportunities, and solutions,” IEEE Network, vol. 35, no. 1, pp. 170–176, 2021.
  4. J. Li, Z. Li, Q. Wu, and G. Tyson, “On Uploading Behavior and Optimizations of a Mobile Live Streaming Service,” Proceedings - IEEE INFOCOM, pp. 1299–1308, 2022.
  5. C. Zhang, J. Liu, Z. Wang, and L. Sun, “Look Ahead at the First-mile in Livecast with Crowdsourced Highlight Prediction,” Proceedings - IEEE INFOCOM, pp. 1143–1152, 2020.
  6. F. Haouari, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani, “QoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine Learning Approach,” IEEE International Conference on Communications, vol. 2019-May, 2019.
  7. R.-X. Zhang, C. Yang, X. Wang, T. Huang, C. Wu, J. Liu, and L. Sun, “Aggcast: Practical cost-effective scheduling for large-scale cloud-edge crowdsourced live streaming,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 3026–3034.
  8. J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang, “Cfa: A practical prediction system for video qoe optimization,” in 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), 2016, pp. 137–150.
  9. F. Tashtarian, A. Bentaleb, H. Amirpour, B. Taraghi, C. Timmerer, H. Hellwagner, and R. Zimmermann, “Lalisa: Adaptive bitrate ladder optimization in http-based adaptive live streaming,” in NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, 2023, pp. 1–9.
  10. T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg, “Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey,” ACM Computing Surveys (CSUR), 2019.
  11. S. Huang, Z. Wang, H. Zhang, X. Wang, C. Zhang, and W. Wang, “One for all: Unified workload prediction for dynamic multi-tenant edge cloud platforms,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’23.   New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3580305.3599453
  12. S. Huang, H. Zhang, X. Wang, M. Chen, J. Li, and V. C. M. Leung, “Spatio-temporal-social multi-feature-based fine-grained hot spots prediction for content delivery services in 5g era,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, ser. CIKM ’21.   New York, NY, USA: Association for Computing Machinery, 2021.
  13. R. Giuliano, F. Mazzenga, and A. Vizzarri, “Integration of broadcaster and telco access networks for real time/live events,” IEEE Transactions on Broadcasting, vol. 66, no. 3, pp. 667–675, 2020.
  14. B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi, and A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless edge: a survey and future directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 431–471, 2020.
  15. N.-N. Dao, A.-T. Tran, N. H. Tu, T. T. Thanh, V. N. Q. Bao, and S. Cho, “A contemporary survey on live video streaming from a computation-driven perspective,” ACM Comput. Surv., 2022.
  16. V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L. Zhang, “Unreeling netflix: Understanding and improving multi-cdn movie delivery,” in 2012 Proceedings IEEE INFOCOM.   IEEE, 2012, pp. 1620–1628.
  17. R.-X. Zhang, T. Huang, M. Ma, H. Pang, X. Yao, C. Wu, and L. Sun, “Enhancing the crowdsourced live streaming: A deep reinforcement learning approach,” in Proceedings of the 29th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, 2019, pp. 55–60.
  18. S. S. Manvi and G. Krishna Shyam, “Resource management for infrastructure as a service (iaas) in cloud computing: A survey,” Journal of Network and Computer Applications, 2014.
  19. C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24–31, 2015.
  20. G. Zhu and W. Gu, “User mapping strategy in multi-cdn streaming: A data-driven approach,” IEEE Internet of Things Journal, pp. 6638–6649, 2021.
  21. C. Anglano, M. Canonico, and M. Guazzone, “Profit-aware resource management for edge computing systems,” in Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking, 2018, pp. 25–30.
  22. A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun, M. G. Martini, and L. Atzori, “Qoe management of multimedia streaming services in future networks: a tutorial and survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 526–565, 2019.
  23. J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Globally distributed content delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50–58, 2002.
  24. Y. Zhang, C. Gao, Y. Guo, K. Bian, X. Jin, Z. Yang, L. Song, J. Cheng, H. Tuo, and X. Li, “Proactive video push for optimizing bandwidth consumption in hybrid cdn-p2p vod systems,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 2555–2563.
  25. F. Wang, C. Zhang, F. wang, J. Liu, Y. Zhu, H. Pang, and L. Sun, “Intelligent edge-assisted crowdcast with deep reinforcement learning for personalized qoe,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 910–918.
  26. R.-X. Zhang, M. Ma, T. Huang, H. Li, J. Liu, and L. Sun, “Leveraging qoe heterogenity for large-scale livecaset scheduling,” in Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 3678–3686.
  27. F. Wang, C. Zhang, F. Wang, J. Liu, Y. Zhu, H. Pang, and L. Sun, “Deepcast: Towards personalized qoe for edge-assisted crowdcast with deep reinforcement learning,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1255–1268, 2020.
  28. H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted qoe optimization of http live streaming with reinforcement learning,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 2020, pp. 706–715.
  29. F. Faniyi and R. Bahsoon, “A systematic review of service level management in the cloud,” ACM Comput. Surv., vol. 48, no. 3, 2015.
  30. A. Paulus, M. Rolinek, V. Musil, B. Amos, and G. Martius, “Comboptnet: Fit the right np-hard problem by learning integer programming constraints,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research.   PMLR, 2021, pp. 8443–8453.
  31. J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,” Operations Research, vol. 54, no. 3, pp. 573–586, 2006.
  32. X. Chen, C. Xu, M. Wang, Z. Wu, S. Yang, L. Zhong, and G.-M. Muntean, “A universal transcoding and transmission method for livecast with networked multi-agent reinforcement learning,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10.
  33. A. Sinha and E. Modiano, “Optimal control for generalized network-flow problems,” IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 506–519, 2018.
  34. R.-X. Zhang, M. Ma, T. Huang, H. Pang, X. Yao, C. Wu, J. Liu, and L. Sun, “Livesmart: A qos-guaranteed cost-minimum framework of viewer scheduling for crowdsourced live streaming,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 420–428.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com