Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Contact Acquisition of PPG Signal using Chest Movement-Modulated Radio Signals (2402.14565v1)

Published 22 Feb 2024 in eess.SP and cs.HC

Abstract: We present for the first time a novel method that utilizes the chest movement-modulated radio signals for non-contact acquisition of the photoplethysmography (PPG) signal. Under the proposed method, a software-defined radio (SDR) exposes the chest of a subject sitting nearby to an orthogonal frequency division multiplexing signal with 64 sub-carriers at a center frequency 5.24 GHz, while another SDR in the close vicinity collects the modulated radio signal reflected off the chest. This way, we construct a custom dataset by collecting 160 minutes of labeled data (both raw radio data as well as the reference PPG signal) from 16 healthy young subjects. With this, we first utilize principal component analysis for dimensionality reduction of the radio data. Next, we denoise the radio signal and reference PPG signal using wavelet technique, followed by segmentation and Z-score normalization. We then synchronize the radio and PPG segments using cross-correlation method. Finally, we proceed to the waveform translation (regression) task, whereby we first convert the radio and PPG segments into frequency domain using discrete cosine transform (DCT), and then learn the non-linear regression between them. Eventually, we reconstruct the synthetic PPG signal by taking inverse DCT of the output of regression block, with a mean absolute error of 8.1294. The synthetic PPG waveform has a great clinical significance as it could be used for non-contact performance assessment of cardiovascular and respiratory systems of patients suffering from infectious diseases, e.g., covid19.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. M. A. Almarshad, M. S. Islam, S. Al-Ahmadi, and A. S. BaHammam, “Diagnostic features and potential applications of ppg signal in healthcare: A systematic review,” in Healthcare, vol. 10, no. 3.   MDPI, 2022, p. 547.
  2. D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran, “A review on wearable photoplethysmography sensors and their potential future applications in health care,” International journal of biosensors & bioelectronics, Aug 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426305/
  3. A. Mehmood, A. Sarouji, M. M. U. Rahman, and T. Y. Al-Naffouri, “Your smartphone could act as a pulse-oximeter and as a single-lead ecg,” Scientific Reports, vol. 13, no. 1, p. 19277, 2023.
  4. M. A. Tahir, A. Mehmood, M. M. U. Rahman, M. W. Nawaz, K. Riaz, and Q. H. Abbasi, “Cuff-less arterial blood pressure waveform synthesis from single-site ppg using transformer & frequency-domain learning,” arXiv preprint arXiv:2401.05452, 2024.
  5. P. Li and T.-M. Laleg-Kirati, “Central blood pressure estimation from distal ppg measurement using semiclassical signal analysis features,” IEEE Access, vol. 9, pp. 44 963–44 973, 2021.
  6. M. Saran Khalid, I. Shahid Quraishi, H. Sajjad, H. Yaseen, A. Mehmood, M. M. U. Rahman, and Q. H. Abbasi, “A low-cost ppg sensor-based empirical study on healthy aging based on changes in ppg morphology,” arXiv e-prints, pp. arXiv–2312, 2023.
  7. R. Sinhal, K. Singh, and M. M. Raghuwanshi, “An overview of remote photoplethysmography methods for vital sign monitoring,” in Computer Vision and Machine Intelligence in Medical Image Analysis, M. Gupta, D. Konar, S. Bhattacharyya, and S. Biswas, Eds.   Singapore: Springer Singapore, 2020, pp. 21–31.
  8. M. Kumar, A. Veeraraghavan, and A. Sabharwal, “Distanceppg: Robust non-contact vital signs monitoring using a camera,” Biomedical optics express, vol. 6, no. 5, pp. 1565–1588, 2015.
  9. Y. Rong, P. C. Theofanopoulos, G. C. Trichopoulos, and D. W. Bliss, “A new principle of pulse detection based on terahertz wave plethysmography,” Scientific reports, vol. 12, no. 1, p. 6347, 2022.
  10. W. Taylor, Q. H. Abbasi, K. Dashtipour, S. Ansari, S. A. Shah, A. Khalid, and M. A. Imran, “A review of the state of the art in non-contact sensing for covid-19,” Sensors, vol. 20, no. 19, p. 5665, 2020.
  11. S. Ahmed and S. H. Cho, “Machine learning for healthcare radars: Recent progresses in human vital sign measurement and activity recognition,” IEEE Communications Surveys & Tutorials, 2023.
  12. K. Pervez, W. Aman, M. M. U. Rahman, M. W. Nawaz, and Q. H. Abbasi, “Hand-breathe: Non-contact monitoring of breathing abnormalities from hand palm,” IEEE Sensors Journal, 2023.
  13. H. M. Buttar, K. Pervez, M. M. U. Rahman, A. N. Mian, K. Riaz, and Q. H. Abbasi, “Non-contact monitoring of dehydration using rf data collected off the chest and the hand,” IEEE Sensors Journal, 2023.
  14. Y. Ge, A. Taha, S. A. Shah, K. Dashtipour, S. Zhu, J. Cooper, Q. H. Abbasi, and M. A. Imran, “Contactless wifi sensing and monitoring for future healthcare-emerging trends, challenges, and opportunities,” IEEE Reviews in Biomedical Engineering, vol. 16, pp. 171–191, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets