Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Pseudopolynomial Time Algorithm for Subset Sum (2402.14493v2)

Published 22 Feb 2024 in cs.DS

Abstract: We investigate pseudo-polynomial time algorithms for Subset Sum. Given a multi-set $X$ of $n$ positive integers and a target $t$, Subset Sum asks whether some subset of $X$ sums to $t$. Bringmann proposes an $\tilde{O}(n + t)$-time algorithm [Bringmann SODA'17], and an open question has naturally arisen: can Subset Sum be solved in $O(n + w)$ time? Here $w$ is the maximum integer in $X$. We make a progress towards resolving the open question by proposing an $\tilde{O}(n + \sqrt{wt})$-time algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. SETH-based Lower Bounds for Subset Sum and Bicriteria Path. ACM Transactions on Algorithms, 18(1):1–22, January 2022. doi:10.1145/3450524.
  2. Fast modular subset sum using linear sketching. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 58–69. SIAM, 2019. doi:10.1137/1.9781611975482.4.
  3. N. Alon. Subset sums. Journal of Number Theory, 27(2):196–205, October 1987. doi:10.1016/0022-314X(87)90061-8.
  4. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC 2015), pages 29–36, New York, USA, June 2015. doi:10.1145/2755996.2756653.
  5. Capacitated Dynamic Programming: Faster Knapsack and Graph Algorithms. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 19:1–19:13, Dagstuhl, Germany, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.
  6. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 31:1–31:21, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.ICALP.2022.31.
  7. Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution. In 31st Annual European Symposium on Algorithms (ESA 2023), volume 274, pages 24:1–24:16, Dagstuhl, Germany, 2023. doi:10.4230/LIPIcs.ESA.2023.24.
  8. Richard Bellman. Dynamic Programming, volume 33. Princeton University Press, 1957. arXiv:j.ctv1nxcw0f, doi:10.2307/j.ctv1nxcw0f.
  9. Sparse nonnegative convolution is equivalent to dense nonnegative convolution. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 1711–1724, Virtual Italy, June 2021. doi:10.1145/3406325.3451090.
  10. Deterministic and Las Vegas Algorithms for Sparse Nonnegative Convolution. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), Proceedings, pages 3069–3090, January 2022. doi:10.1137/1.9781611977073.119.
  11. Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages 1269–1282, New York, NY, USA, June 2018. doi:10.1145/3188745.3188876.
  12. Top-k-convolution and the quest for near-linear output-sensitive subset sum. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2020), pages 982–995, 2020. doi:10.1145/3357713.3384308.
  13. Fast n-Fold Boolean Convolution via Additive Combinatorics. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), 2021. doi:10.4230/LIPIcs.ICALP.2021.41.
  14. A Fine-Grained Perspective on Approximating Subset Sum and Partition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), Proceedings, pages 1797–1815, January 2021. doi:10.1137/1.9781611976465.108.
  15. Karl Bringmann. A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 1073–1084, January 2017. doi:10.1137/1.9781611974782.69.
  16. Karl Bringmann. Knapsack with Small Items in Near-Quadratic Time, September 2023. To Appear in STOC 2024. arXiv:2308.03075.
  17. A statistical theorem of set addition. Combinatorica, 14(3):263–268, 1994. doi:10.1007/BF01212974.
  18. On Near-Linear-Time Algorithms for Dense Subset Sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1777–1796, January 2021. doi:10.1137/1.9781611976465.107.
  19. Solving dense subset-sum problems by using analytical number theory. Journal of Complexity, 5(3):271–282, 1989.
  20. Solving dense subset-sum problems by using analytical number theory. Journal of Complexity, 5(3):271–282, September 1989. doi:10.1016/0885-064X(89)90025-3.
  21. Verifying candidate matches in sparse and wildcard matching. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing (STOC 2002), pages 592–601, New York, NY, USA, May 2002. doi:10.1145/509907.509992.
  22. Mark Chaimovich. New algorithm for dense subset-sum problem. Astérisque, 258:363–373, 1999.
  23. Clustered Integer 3SUM via Additive Combinatorics. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing (STOC 2015), pages 31–40, New York, NY, USA, June 2015. doi:10.1145/2746539.2746568.
  24. Approximating partition in near-linear time, 2024. To Appear in STOC 2024. arXiv:2402.11426.
  25. Faster algorithms for bounded knapsack and bounded subset sum via fine-grained proximity results. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 4828–4848. SIAM, 2024. doi:10.1137/1.9781611977912.171.
  26. Approximating Knapsack and Partition via Dense Subset Sums. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), Proceedings, pages 2961–2979, January 2023. doi:10.1137/1.9781611977554.ch113.
  27. An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem. SIAM Journal on Computing, 20(6):1157–1189, December 1991. doi:10.1137/0220072.
  28. William T Gowers. A new proof of szemerédi’s theorem. Geometric & Functional Analysis GAFA, 11(3):465–588, 2001. doi:10.1007/s00039-001-0332-9.
  29. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963. doi:10.1080/01621459.1963.10500830.
  30. Simple and faster algorithms for knapsack. In Proceedings of 2024 Symposium on Simplicity in Algorithms (SOSA 2024), pages 56–62, 2024. doi:10.1137/1.9781611977936.6.
  31. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems. Journal of the ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.
  32. Ce Jin. 0-1 Knapsack in Nearly Quadratic Time, August 2023. To Appear in STOC 2024. arXiv:2308.04093.
  33. On integer programming, discrepancy, and convolution. Mathematics of Operations Research, 48(3):1481–1495, 2023. doi:10.1287/moor.2022.1308.
  34. Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm for subset sum. In Proceedings of 2nd Symposium on Simplicity in Algorithms (SOSA 2019), volume 69, pages 17:1–17:6, 2019. doi:10.4230/OASICS.SOSA.2019.17.
  35. Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.
  36. Richard M Karp. The fast approximate solution of hard combinatorial problems. In Proc. 6th South-Eastern Conf. Combinatorics, Graph Theory and Computing (Florida Atlantic U. 1975), pages 15–31, 1975.
  37. Kim-Manuel Klein. On the fine-grained complexity of the unbounded subsetsum and the frobenius problem. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 3567–3582. SIAM, 2022. doi:10.1137/1.9781611977073.141.
  38. An efficient approximation scheme for the subset-sum problem. In Hon Wai Leong, Hiroshi Imai, and Sanjay Jain, editors, Algorithms and Computation, Lecture Notes in Computer Science, pages 394–403, Berlin, Heidelberg, 1997. doi:10.1007/3-540-63890-3_42.
  39. A faster pseudopolynomial time algorithm for subset sum. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 1062–1072, 2017. doi:10.1137/1.9781611974782.68.
  40. Subset Sum Made Simple, July 2018. arXiv:1807.08248.
  41. A Subquadratic Approximation Scheme for Partition. In Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), Proceedings, pages 70–88, January 2019. doi:10.1137/1.9781611975482.5.
  42. Vasileios Nakos. Nearly Optimal Sparse Polynomial Multiplication. IEEE Transactions on Information Theory, 66(11):7231–7236, November 2020. doi:10.1109/TIT.2020.2989385.
  43. David Pisinger. Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal of Algorithms, 33(1):1–14, October 1999. doi:10.1006/jagm.1999.1034.
  44. Pisinger. Dynamic programming on the word ram. Algorithmica, 35:128–145, 2003. doi:10.1007/s00453-002-0989-y.
  45. Knapsack and Subset Sum with Small Items. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198, pages 106:1–106:19, Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.ICALP.2021.106.
  46. A. Sárközy. Finite addition theorems, I. Journal of Number Theory, 32(1):114–130, May 1989. doi:10.1016/0022-314X(89)90102-9.
  47. A. Sárközy. Fine Addition Theorems, II. Journal of Number Theory, 48(2):197–218, August 1994. doi:10.1006/jnth.1994.1062.
  48. E. Szemerédi and V. Vu. Long arithmetic progressions in sumsets: Thresholds and bounds. Journal of the American Mathematical Society, 19(1):119–169, September 2005. doi:10.1090/S0894-0347-05-00502-3.
  49. E. Szemerédi and V. H. Vu. Finite and Infinite Arithmetic Progressions in Sumsets. Annals of Mathematics, 163(1):1–35, 2006. URL: https://www.jstor.org/stable/20159950.
  50. Arie Tamir. New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems. Operations Research Letters, 37(5):303–306, 2009. doi:10.1016/j.orl.2009.05.003.
  51. Improved Approximation Schemes for (Un-)Bounded Subset-Sum and Partition, December 2022. arXiv:2212.02883.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com