Spin-dependent edge states in two-dimensional Dirac materials with a flat band (2402.14248v2)
Abstract: The phenomenon of spin-dependent quantum scattering in two-dimensional (2D) pseudospin-1/2 Dirac materials leading to a relativistic quantum chimera was recently uncovered. We investigate spin-dependent Dirac electron optics in 2D pseudospin-1 Dirac materials, where the energy-band structure consists of a pair of Dirac cones and a flat band. In particular, with a suitable combination of external electric fields and a magnetic exchange field, electrons with a specific spin orientation (e.g., spin-down) can be trapped in a class of long-lived edge modes, generating resonant scattering. The spin-dependent edge states are a unique feature of flat-band Dirac materials and have no classical correspondence. However, electrons with the opposite spin (i.e., spin up) undergo conventional quantum scattering with a classical correspondence, which can be understood in the framework of Dirac electron optics. A consequence is that the spin-down electrons produce a large scattering probability with broad scattering angle distribution in both near- and far-field regions, while the spin-up electrons display the opposite behavior. Such characteristically different behaviors of the electrons with opposite spins lead to spin polarization that can be as high as nearly 100%.
- Y. Betancur-Ocampo, F. Leyvraz, and T. Stegmann, Electron optics in phosphorene pn junctions: negative reflection and anti-super-Klein tunneling, Nano. Lett. 19, 7760 (2019).
- V. V. Cheianov, V. Fal’ko, and B. Altshuler, The focusing of electron flow and a Veselago lens in graphene pn junctions, Science 315, 1252 (2007).
- J. Cserti, A. Pályi, and C. Péterfalvi, Caustics due to a negative refractive index in circular graphene p- n junctions, Phys. Rev. Lett. 99, 246801 (2007).
- A. V. Shytov, M. S. Rudner, and L. S. Levitov, Klein backscattering and Fabry-Pérot interference in graphene heterojunctions, Phys. Rev. Lett. 101, 156804 (2008).
- N. Gu, M. Rudner, and L. Levitov, Chirality-assisted electronic cloaking of confined states in bilayer graphene, Phys. Rev. Lett. 107, 156603 (2011).
- M. Sadrara and M. Miri, Dirac electron scattering from a cluster of electrostatically defined quantum dots in graphene, Phys. Rev. B 99, 155432 (2019).
- V. H. Nguyen and J.-C. Charlier, Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion, Phys. Rev. B 97, 235113 (2018).
- H. Haugen, D. Huertas-Hernando, and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B 77, 115406 (2008).
- A. G. Moghaddam and M. Zareyan, Graphene-based electronic spin lenses, Phys. Rev. Lett. 105, 146803 (2010).
- P. Grivet, P. W. Hawkes, and A. Septier, Electron optics (Elsevier, 2013).
- P. E. Batson, N. Dellby, and O. L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617 (2002).
- H. Tian, K. S. Chan, and J. Wang, Efficient spin injection in graphene using electron optics, Phys. Rev. B 86, 245413 (2012).
- J. Wang and J.-F. Liu, Super-klein tunneling and electron-beam collimation in the honeycomb superlattice, Phys. Rev. B 105, 035402 (2022).
- H.-Y. Xu and Y.-C. Lai, Pseudospin-1 wave scattering that defies chaos Q𝑄Qitalic_Q-spoiling and Klein tunneling, Phys. Rev. B 99, 235403 (2019).
- H.-Y. Xu, L. Huang, and Y.-C. Lai, Klein scattering of spin-1 Dirac-Weyl wave and localized surface plasmon, Phys. Rev. Res. 3, 013284 (2021).
- H.-Y. Xu and Y.-C. Lai, Anomalous chiral edge states in spin-1 Dirac quantum dots, Phys. Rev. Res. 2, 013062 (2020a).
- H.-Y. Xu and Y.-C. Lai, Anomalous in-gap edge states in two-dimensional pseudospin-1 Dirac insulators, Phys. Rev. Res. 2, 023368 (2020b).
- C. K. Ullal, J. Shi, and R. Sundararaman, Electron mobility in graphene without invoking the dirac equation, Am. J. Phys. 87, 291 (2019).
- I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
- S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665 (1990).
- P. Maksym and H. Aoki, Complete spin and valley polarization by total external reflection from potential barriers in bilayer graphene and monolayer transition metal dichalcogenides, Physical Review B 104, 155401 (2021).
- V. K. Dugaev, V. I. Litvinov, and J. Barnas, Exchange interaction of magnetic impurities in graphene, Phys. Rev. B 74, 224438 (2006).
- F. Wang and Y. Ran, Nearly flat band with chern number c=2𝑐2c=2italic_c = 2 on the dice lattice, Phys. Rev. B 84, 241103 (2011).
- J. Romhányi, K. Penc, and R. Ganesh, Hall effect of triplons in a dimerized quantum magnet, Nat. Commun. 6, 6805 (2015).
- S. G. Tan and M. B. Jalil, 5 - spintronics and spin Hall effects in nanoelectronics, in Introduction to the Physics of Nanoelectronics, Woodhead Publishing Series in Electronic and Optical Materials, edited by S. G. Tan and M. B. Jalil (Woodhead Publishing, 2012) pp. 141–197.
- Wikipedia contributors, Momentum-transfer cross section — Wikipedia, The Free Encyclopedia (2022), [Online; accessed 30-January-2023].
- J. Wiersig and M. Hentschel, Combining directional light output and ultralow loss in deformed microdisks, Phys. Rev. Lett. 100, 033901 (2008).