Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Method to Improve the Precision of Quantum Phase Estimation Algorithm (2402.14191v1)

Published 22 Feb 2024 in quant-ph

Abstract: Here we revisit the quantum phase estimation (QPE) algorithm, and devise an iterative method to improve the precision of QPE with propagators over a variety of time spans. For a given propagator and a certain eigenstate as input, QPE with propagator is introduced to estimate the phase corresponding to an eigenenergy. Due to the periodicity of the complex exponential, we can pinpoint the eigenenergy in a branch of comb-like ranges by applying QPE with propagators over longer time spans. Thus, by picking up appropriate time spans, the iterative QPE with corresponding propagators can enable us to pinpoint the eigenenergy more precisely. Moreover, even if there are only few qubits as ancilla qubits, high precision is still available by the proposed iterative method. Our work provides a feasible and promising means toward precise estimations of eigenvalue on noisy intermediate-scale quantum (NISQ) devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. R. P. Feynman et al., Simulating physics with computers, Int. j. Theor. phys 21 (2018).
  2. S. Bravyi, D. Gosset, and R. König, Quantum advantage with shallow circuits, Science 362, 308 (2018).
  3. I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15, 1273 (2019).
  4. A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, arXiv preprint quant-ph/9511026  (1995).
  5. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM review 41, 303 (1999).
  6. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Physical review letters 103, 150502 (2009).
  7. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
  8. J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Simulation of electronic structure hamiltonians using quantum computers, Molecular Physics 109, 735 (2011).
  9. P. Jordan and E. P. Wigner, About the pauli exclusion principle, Z. Phys 47, 14 (1928).
  10. N. Hatano and M. Suzuki, Finding exponential product formulas of higher orders, in Quantum annealing and other optimization methods (Springer, 2005) pp. 37–68.
  11. R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Reviews of modern physics 20, 367 (1948).
  12. S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
  13. J. Hubbard, Electron correlations in narrow energy bands, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276, 238 (1963).
  14. J. Li, B. A. Jones, and S. Kais, Toward perturbation theory methods on a quantum computer, Science Advances 9, eadg4576 (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com